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ABSTRACT

It is shown that all the variables needed for a classical

description of the dynamical behavior of a fluid consisting of

electrically charged particles having spin can be incorporated

into two spinors having a total of four complex elements. The

particle spin is included, not because it plays any significant

role _n magnetogas-dynamical problems, but because it is needed

to account for all the degrees of freedom of the spinors.

The link between the spinors and the familiar quantities

that describe the fluid is provided by the "particle tetrapod"

consisting of One time-like and three space-like L-vectors.

These four vectors constitute an orthonormal system and are

normalized to the particle density of the fluid in its local

rest-frame. The time-like vector is identified with the flux

density of the fluid; one space-like vector is used to specify

the orientation of the particle spin axis; and the remaining

degree of freedom, an angle, is postulated to be proportional

to the de Broglie phase, the proportionality constant being

Planck' s constant.

Incorporating the de Broglie phase into the tetrapod has

two consequences: First, Planck's constant is introduced into

the formalism. Second, because the canonical momentum is the
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gradient of the de Broglie phase, the tetrapod contains all the

information needed for a dynamical, as well as a kinematical,

description of the fluid.

It is shown that the vectors of'the tetrapod can be generated

by four different bilinear forms involving the elements of two

spinors and their complex conjugates. In this sense, the spinors

may be regarded as the "square roots" of the tetrapod. The phase

angle common to the two spinors is the only one of the eight

degrees of freedom of the spinors that does not make itself felt

in generating the tetrapod. This phase angle is used to specify the

sign of the particle charge.

If the spinors that describe the fluid satisfy a first-order

linear partial differential equation that involves the 4-vector

electromagnetic potential and the particle mass, regarded as a

linear function of the gravitational potential and the specific

enthalpy, then it turns out that, for the case of adiabatic flow,

the quantities involved in the tetrapod automatically satisfy a

4-vector equation that has the form of the relativistic Euler

equation in the presence of electromagnetic, gravitational, and

pressure fields. Spin-dependent forces proportional to Planck's

constant also appear in this equation but, for problem.s on an

macroscopic scale, these forces are completely negligible. It
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is shownthat it is possible to drop the condition of adiabatic

flow, and admit fluid viscosity, or energy injection or loss

(e.g. through nuclear reactions or radiation, respectively),

without changing the form of the spinor equation to be solved.

Only the form of the equation that determines the specific enthalpy

in terms of other fluid quantities is altered.

Becausethe spinor equation is linear for the case of

gravitational, electromagnetic, and thermal fields regarded as

fixed functions of the space-time coordinates, whereas the

corresponding Euler equation is nonlinear, it is suggested that

use of the spinor alternative to the Euler equation would

facilitate the solution of the complete magnetogas-dynamical

problem, involving both fluid-dynamical and field equations, by

meansof a straight-forward iteration procedure. This approach

should be especially fruitful in the case of the self-excited

dynamoproblem, and it is in terms of this problem that the physical

interpretation of the formalism is made.

The spinor alternative to Euler's equation has the form of

the Dirac equation, except that the particle massis regarded

as a scalar function of the space-time coordinates, rather than

a constant. The theory, however, except for the incorporation of

the de Broglie phase into the tetr_pod, is completely classical
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in spirit. In particular, no quantization process, and nothing

corresponding to the Exclusion Principle have been introduced

into the formalism. Thus the theory developed here could not be

expected to yield valid solutions for problems in which the charged

fluid should become degenerate as, for instance, at the centers

of certain stars.

As a preliminary to the introduction of the particle tetrapod

and the spinor equation, consideration is given to the relativistic

problem of electron and proton gases interacting with the gravita-

tional, electromagnetic, and pressure fields produced by these

same charged gases. The analysis is first carried out without

particle spin, and is then modified to take spin effects into

account. Finally, the particle tetrapod and the spinor equation

are introduced. The detailed mathematical work involving spinors

is relegated to an appendix, only the results being summarized

and interpreted in the body of the paper, an understanding of

which requires no prior knowledge of spinor analysis.
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SPINOR FORMLrLATION OF MAGNETOGAS DYNAMICS

I INTRODUCTION

Self-Excited Dynamo

The basic equations of magnetogas dynamics are composed of two

categories of equations: the fluid-dynamical equations, and the

field equations. It is the purpose of this paper to develop a new

formulation of the fluid-dynamical equations that will simplify the

problem of the simultaneous solution of the fluid-dynamical and

field equations. Although this new formulation will be applicable

to a wide range of problems, the problem we shall use as a guide

in discussing physical questions will be that of an isolated spheriod

of fully ionized plasma whose fluid and electric currents are such

that it constitutes a self-exciteddyuamo. A discussion of this

type problem and review of the literature has been given by

Elsasser(l_ and in a more condensed form by Cowling(2).

The only serious attempt at a quantitative solution of this

problem has been the one carried out by Bullard and his colla-

borators(3). In this calculation the fluid dynamical half of the

problem was neglected, except for imposing the continuity condition.

The calculation assumes an incompressible fluid (core of the earth),

and so would not be valid, except in a qualitative way, for a star.

Because of the immense difficulty of the calculation, it was
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necessary to truncate the harmonic expansion of the solution

after the first few terms, and for this reason the solution is

only approximate and somedoubt remains concerning its convergence.

Finally, the calculation was carried out for only one possible flow

pattern. Other patterns, possibly of great physical interest,

have notas yet been attempted. Calculations [(4) and (5)] have

been made,however, for two other flow patterns that do not pre-

tend to resemble the actual flow within the earth's core. The

primary purpose of these calculations was merely to demonstrate the

possibility of the existence of a self-excited dynamoin a homo-

geneous, dissipative, conducting sphere. Accordingly, the flow

patterns were chosen to facilitate the calculation rather than (as

in Bu!!ard's calculation) to resemble a possible flow pattern in

the core of the earth. These calculations, like Bullard's, neg-

lected the dynamical half of the problem except for the condition

that the fluid flow be solenoidal.

The extreme difficulty of these calculations clearly illus-

trates the desirability of finding an alternative formulation of

magnetogasdynamics that will ease the calculational burden.

Two-Fluid Formulation of the Problem

Rather than formulate the problem in terms of a single conduct-

ing fluid through which an electric current flows, we shall work with
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two electrically charged fluids the electron and proton gases.

(Simply by changing the particle mass, wewould have a gas of posi-

tive ions, instead of a proton gas.) This two-fluid approach is

more rigorous than the single-fluid approach in that it obviates the

need to introduce the conductivity which under certain conditions

becomesan untenable concept.

The electron and proton gases are postulated to be independent

perfect gases that interact only through commongravitational and

electromagnetic fields. The partial pressures of the two charged

gases are taken into account, but viscosity is neglected. Each

of the charged fluids must independently satisfy Euler's equation,

which is just the expression of Newton's second law for the fluid.

Sources of Nonlinearity

The magnetogas-dynamicalproblem is intrinsically nonlinear

inasmuch as the interaction of the electron and proton gases with

each other, and the self-interaction of each, means that super-

posab_l_ty of solutions is not possible. However, even when we

eliminate the interaction by requiring that the gravitational,

electromagnetic, and pressure fields be fixed functions of the space-

time coordinates (i.e., independent of the fluid flow solutions),

we find that Euler's equation is still nonlinear because it con-

tains terms that are quadratic in the fluid velocity. Because we
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know from physical reasoning that in the case of fixed fields

superpos_bility of solutions is possible, it would appear that the

nonlinearity in Euler's equation caused by the terms that are quad-

ratic in velocity must be spurious in the sense that there must exist

an alternative way to formulate the fluid-dynamical problem that would

be linear for the case of fixed fields.

Weshall see that it is possible to replace Euler's equation by

an equivalent spinor equation that is just the desired linear alter-

native (in the case of fixed fields). Having this linear alternative

to Euler's equation, a straight-forward iteration solution of the

total magnetogas-dynamicalproblem is now possible: We start with

a zero-order solution of the linear spinor equations (one for each

of the two charged fluids), for a certain choice of zero-order fields;

we use this solution to determine the zero-order source terms in the

field equations; we solve the field equations for the first-order

corrections to the fields, which we then use in the spinor equations

to calculate the first-order corrections to the fluid flow of the

electron and proton gases; then the whole process is repeated as

many times as needed to give the desired accuracY. Such a straight-

forward iteration procedure would be impossible using Euler's equa-

tion instead of the spinor equation because the solution of the fluid

flow for the case of given fixed fields would be blocked by the

nonlinearity of Euler's equation arising from the terms that are
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quadratic in velocity.

Spinor Equations of Motion

As a prerequisite for deriving the spinor equations, we must

introduce the electron and proton spin as additional degrees of

freedom. Since particle spin plays no significant role in mag-

netogas-dynamical problems, it would seem that this is an unneces-

sarycomplication of an already too complicated problem. In actual

fact, however, in the solution of a problem like the self-excited

dynamo, the introduction of spin coordinates does not increase the

calculational difficulty because it merely means that we work with

an expansion in spinor harmonics instead of an expansion of vector

harmonics.

We shall see that it is possible to regard the spinors that

describe the electron_a_ for example, as the "square roots" of the

electron flux density 4-vector. In the same way that we find that

taking the square root of a real number gives us an extra degree of

freedom (the sign of the root) that must be specified by some

physical condition, taking the "square root" of the flux 4-vector

gives rise to extra degrees of freedom, among which are those cor-

responding to particle spin. Thus, the introduction of particle spin

is the necessary price we must pay for the convenience of working

with the linear spinor equation, rather than with the nonlinear
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Euler (4-vector) equation.

We shall find that the spinor equations of motion have the

form of the Dirac equation in which the particle mass, instead of

being a constant, is a scalar function of the space-time coordinates

that includes the massper particle associated with the gravitational

and thermal energy of the fluid, as well as the constant rest-mass

of the particle. In spite of the fact that the spinor equation of

motion has the form of the Dirac equation, the theory developed

in this paper is purely classical (except for the fact that it

incorporates the delBroglieHyp0th@sis, whi_hl!,int_dueeai_lan_'s

constant into the theory). In particular, no quantization pro-

cess is introduced. Thus the Exclusion Principle, and consequently

degeneracy of the electron and proton gases at high densities, do

not follow from the theory.

In recent years there has been an increased interest in the

problem of finding^classical interpretation of the Dirac equation.

Noteworthy in this respect is the long paper by Takabayasi(6),

and the book by iHalbwachs(7) in which most of the work up to 1960

is reviewed. More recent work has been done by Schiller(8) and by

Grossmannand Peres(9). (The latter reference gives a bibliography

for the most recent work.) All this work differs from the theory

developed in this paper in that the authors cited were ultimately
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concerned with finding a deeper or more intuitively appealing inter-

pretation of quantummechanics, rather than in the simplification

of the equations of classical magnetogasdynamics. Thus, although

someformal similarities exist between the present work and certain

of the papers cited, vital differences also exist, with the result

that any comparison must be madewith great care. In any case,

the present paper is intended to be self-contained and no use is

madeof any previous work.

Assumptions and Approximations

A realistic solution of the self-excited dynamo problems

corresponding to the sun or the core of the earth would involve

taking into account many detailed and complicated physical effects,

some of which are not well understood. Such a detailed program

would be premature. Rather, we shall aim at solving a well-defined,

relatively simple idealization that, with only minor modifications

can be brought into close enough correspondence with the real problems

occurring in nature to afford some physical insight. We shall

now discuss the assumptions and approximations that define this

idealization.

First, we treat the electron and proton gases as fluids, rather

than as distributions of particles having different velocities,

spins, etc. Thus, for example, at a given point of space-time,
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there is only a single electron velocity, and this velocity is a

continuous function of the space-time coordinates.

Further, we postulate that the electron and proton gases are

perfect, classical (no degeneracy) gases.

Wepostulate that we have at every point of space-time a

fully ionized plasm_ in which the electrons and protons (or positive

ions) are individually conserved.

We shall neglect fluid viscosity (but not pressure). This is

a valid approximation in situations such as we find in the interior

of the sun and earth's core, since in such cases the magnetic forces

are very large comparedwith the viscous forces. In the case of very

tenuous plasmas, such as we find in the corona of the sun, or in

interstellar space, this is no longer true, and it would be neces-

sary to take viscosity into account. This can be done in fact,

by meansof a relatively minor modification of the theory, which is

discussed in Appendix A. For the sake of definiteness, however, we

assumethroughout the body of the paper that fluid viscosity maybe

neglected.

We imposetwo different adiabatic conditions: first, we postu-

late that a given bubble of electron or proton gas loses or gains no

heat energy. Second, we postulate that if we were to makea small

adiabatic virtual displacement of a given bubble of gas into a
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neighboring position, then the bubble will have the samethermodynamic

properties as the fluid surrounding its new position. Weshall see

that for quasistatic (i.e., reversible) flow, these two adiabatic

conditions can be combined into the single condition that the

4-gradient of the specific entropy vanish. This meansthat the

specific entropy is constant throughout the gas for all time.

The adiabatic condition with respect to virtual displacement

of a bubble of gas is a natural one, since it corresponds to the fact

that even though the m_croscopic flow is well-ordered, there is

always small-scale turbulence that tends to maintain the assumed

adiabatic condition.

The assumption that a given bubble of gas gains or loses no

heat energy as time goes by is less realistic inasmuchas it neglects

energy lost through radiation and the possibility of energy injection

through nuclear reactions or someother mechanism. Moreover, we are

neglecting heat gained or lost by conduction. It is, in fact, not

difficult to modify the theory so as to allow for energy injection

or loss. The way in which this canbe done is discussed in Appendix

A. For definiteness, however, through the body of the paper we shall

neglect the possibility of energy loss or injection. Wejustify this

by taking the point of view that we divide the total problem into two

steps: (i) Solution of the dynamical problem subject to the adiabatic
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condition; (2) Solution of the energy balance problem subject to the

assumption that dropping the adiabatic condition has no effect on

the dynamical solution other than to cause a slow change in its

parameters (e.g., the slow expansion or contraction of a star).

This two-step point of view is illustrated in Figure i: On

the left side is showna possible flow pattern

P

C

l

S

Z

Figure I - Heat Transfer Associated with Convection

in the sun or the earth's core. Fluid rises from the center C in

the equatorial plane, flows along the surface through a typical sur-

face point S to the poles, where it returns to the center. On the

right side of Figure i is shown the pressure (P) vs. specific volume

(V1) plot for a typical bubble of fluid that goes through a complete
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cycle in the indicated flow pattern. The points C and S on the P-Vl

plot indicate the thermodynamic state of the bubble at the corres-

ponding points in the flow pattern. Thus, assuming the adiabatic

condition, we note that as the bubble movesfrom the center ( to

the surface S, on the P-VI plot it movesdownwardfrom C to S, cor-

responding to an expansion.. The return trip to the center of the

core carries it along the samepath in the P-VI plot back to the point

C. Thug, on the outward trip, the bubble performs an amount of work

equal to the area under the curve C-S_ that is_heat energy in this

amount is converted into someother form of energy, notably elec-

tromagnetic energy. But on the return trip the bubble retrieves this

energy, sothere is_.nOnet_ran_fer to _lectromagnetic field.

Nowlet us imagine that, whenthe bubble is at C, an amount of

energy Qi is injected isothermally by meansof a nuclear reaction so

that while the bubble is still at the center of the core C, it

traverses the isothermal C-Cj. Then it expands adiabatically

reaching the surface in the thermodynamicstate S_. At the surface

it isothermally radiates the energy Qo, and then traverses the

path 5-C back to the center. Thuswe have a Carnot cycle in which

the net amountof energy_is transferred to the electromagnetic

field to compensatelosses due to Joule beating.

The two-step procedure mentioned above for solving the total
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problem is valid only if the Carnot cycle is very narrow. In such

a case, the energy injection and loss will have no appreciable

effect on the dynamics of the problem. This amounts to assuming

that the energy injected and radiated during each cycle is small

comparedwith the adiabatic work performed during the trip from the

center to the surface. Obviously, this will not be the case if

energy is injected too quickly. In such cases the energy injection

does affect the dynamical problem, and it is necessary to modify

the theory in the mannerdiscussed in Appendix A.

As a final observation concerning the adiabatic condition, we

note that, since this condition is applied to the electron and

proton gases independently, it would seemthat we are assuming that

there is no energy transfer between the two gases_ that is, we are

assuming that the thermodynamic properties_in particular the temp-

eratures, of the two gases are completely independent. Weshall

find, however, that it follows as a consequenceof the approximate

equality of the two gas densities that_if the temperatures are

approximately equal at one point in space-time, then they must be

approximately equal everywhere. The approximate equality of the two

charged gas densities is, of course, automatically maintained by

the fact that strong electric fields cannot exist in a plasma. The

approximate equality of the two temperatures at a single point,

such as the center of the sun or earth's core, must be imposed as
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a boundary condition.

Completing the list of approximations that define our idealized

model, we note that we employ a scalar theory of gravitation which,

although it is a covariant theory, will not give the correct higher-

order velocity dependence(such as we encounter in computing the

advance of the perihelion of Mercury). This requires a theory based

on a symmetric tensor, as in General Relativity, rather than one

based on a scalar potential.

_calar theory, however, is perfectly adequate for the needs of

magnetogasdynamics. Weshall also violate the Equivalence Principle

as far as the massassociated with electromagnetic, thermal, and

gravitational energy is concerned. That is, although all these

contributions will be included in the inertial mass, they will

not be included in either the active or passive gravitational mass_

for which we use just the rest-mass. This approximation should also

be adequate for the needs of almost all of the existing problems in

magnetogasdynamics.

Plan of Presentation

As a preliminary to writing down the fundamental equation of

motion for each of the two charged fluids (Euler's equation), it is

shown in Section II that the necessary thermal properties of each

fluid can be completely described in terms of the specific enthalpy
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of the fluid and the particle density. The great advantage of

doing this is that the pressure term in Euler's equation can then

be replaced by the gradient Of the speoificenthalpy,_which thenplays

the role of a "thermal potential function" that is completely analogous

to the scalar gravitational potential. This fact allows us to ab-

sorb both the gravitational and the thermal energy into the particle

rest-mass, which is regarded as a scalar function of the space-time

coordinates. In this way the particle rest-mass is madeto play a

dual role : It describes the inertial property of the particle, and

at the sametime serves as a potential function for the scalar force

fields acting on the particle. In Appendix A, it is shownthat

this procedure has the added advantage that, whenwe replace the

adiabatic condition by one that allows for fluid viscosity or energy

injection, the form of Euler's equation (or the spinor equation that

replaces it) remains unchanged. Only the form of the "thermal

field equation", i.e._ the equation that determines the specific

enthalpy as a function of the fluid variables, is altered. This

sameremark is also valid if we drop the assumption that the two

charged fluids are perfect gases.

After writing downEuler's equation in terms of specific enthalpy

instead of pressure, the rest of Section II is devoted to showing

that, if we limit ourselves to a certain subset of solutions that
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correspond to imposing certain physically reasonable conditions,

Euler's equation can be replaced by a tensor equation that is linear

except for the fact that the quadratic normalization condition for

the 4-velocity must be satisfied.

In Section III, it is shown that it is this tensor equation,

rather than Euler's equation_that results from the Hamilton-Jacobi

formulation of the problem. In order to make the discussion more

physical (as well as to simplify it), the Hamilton-Jacobi formulation

is presented simply as the implementation of the deBroglie Hypothesis,

regarded as an experimental fact.

The conclusion drawn from Sections II and III is that the ten-

sor equation is more fundamental than Euler's equation. In Section

VIII it is shown that the spinor equations correspond to the tensor

equation, rather than directly to Euler's equation. (Any solution

of the tensor equation, of course, is a solution of Euler's equa-

tion, although the converse in general is not true.)

In Section IV the electromagnetic and gravitational field

equations are presented.

In Section V the changes in the fluid-dynamical equations that

result when we introduce particle spins are discussed.

Section VI is a summary of the results of the preceding sec-

tions, all of which have bemn derived within the framework of
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Special Relativity, but without any mention of spinors.

In Section VII spinors are introduced as the "square roots" of

4-vectors, and all the necessary dynamical quantities are defined

in terms of spinors. The discussion is intended to be self-con-

tained, and no prior knowledge of spinor analysis is assumed.

In Section VIII the postulated spinor equation of motion is

presented, and the corresponding scalar, vector, and tensor equa-

tions that follow as direct consequencesof the spinor equation and

the definitions of Section VII are presented and discussed. The

identification of these equations with the equations of magnetogas

dynamics that were summarizedin Section VI is made, __ndthe ad-

vantages of the spinor formulation are discussed. No prior know-

ledge of spinor analysis is necessary to follow the discussion of

this section. The detailed derivation of the results presented in this

section is given in Appendix C, and here somefamiliarity with spinor

analysis is assumed.

Choice of Metric

All the work of this paper is done within the framework of

Special Relativity. The metric tensor gjk that is used throughout

is chosen to have the following form:

gjj gjkoo = i; = = -i; = = o
g = goo gjj gjk

(j,k = i, 2, 3) j % k

(i-i)
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This choiCe_of metri_a_which_isth_ most convenient for the transition

to spinors, meansthat the spatial componentsof the contravariant

and covariant forms of a 4-vector differ by a sign. Weshall always

identify the contravariant form as being the four-dimensional gen-

eralization of the corresponding 3-vector. (The only exception is the

gradient operator, discussed below.) Thus, if_is the particle

3-velocity, the 4-velocity U j has the following form:

o 1 _r

=j_ :Uo_ _:_

o

u j _ u _J = - u. (j = i, 2, 3)
c j

(1-2)

Note that this specification of u j corresponds to a normalization

to unity, rather than to c2:

uJu. = 1 (i-3)
J

X 3Because (xl, x 2, ) (rather than the covariant components)

are identified with the coordinates (x, y, z), it follows that the

covariant form of the gradient operator 8j (rather than the contra-

variant form BJ) is the generalization of the 3-gradient _ = (_x, Sy, Sz):

_o - _h_ _o- c_t =

(_-4)

8j : _ : - 8j (j = l, 2, 3)
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and

v = (_x' _y' _z) = (_' _2, _3) (I-5)

The d'Alembertian operator [] is defined in terms of the 4-gradient

_j as follows:

= SJ _j i _2
(i-6)

We shall have occasion to use the completely antisymmetric

unit tensor 6 ijk%, which is zero if any two of its indices are

equal, and +i or -i if the indices are all different and their

order differs from the order (o 1 2 3) by an even or odd number

of transpositions respectively. The covariant form of the anti-

symmetric unit tensor _ijk£ is derived from the contravariant form

_i nmpq according to the usual rule:

_ _ ijk£ = gim gin gkp ggq _ mnpq (1-7)

This relation has the consequence that the definition of the co-

variant form of the tensor differs by a sign from that of the

contravariant form. Thus _ is -i (instead of +i) when the
ijk%

r_ .I •
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order of the indices (ijkg) differs from the order (0 1 2 3) by an

even number of transpositions.

Inasmuch as the definition of the contravariant form _ijkg is

just the extension of the familiar three-dimensional antisym_tric

unit tensor, whereas the definition of the covariant form differs

by a sign, we see that these definitions are consistent with the

general rule that it is the contravariant form of a quantity,

rather than the covariant form, that we regard as the generalization

to four dimensions of the corresponding three-dimensional quantity.
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II EULER FORMULATION

Thermodynamic Properties

As a preliminary to writing down the Euler equation for each

of the charged fluids, we shall first consider the thermodynamic

properties of the fluids. All these properties wi!] appear _n dup-

licate, one for each fluid. This fact will be indicated by the

symbol (±) used usually as a subscript, but sometimes as a _o._,_._c_.-i/

when the symbol in question already has a subscript. When we have a

product of quantities all referring to one of the two fluids, the

symbol (±) will be appended to the entire product instead of to

each symbol in the product individually. Our notation for the nec-

essary thermodynamic quantities is defined as follows:

P(±)

Vl

k

pressure

-z absolute temperature

particle rest-mass

particle density in fluid rest-frame

volume per unit mass (specific volume)

Boltzmann's constant = 1.3708 x !0 -16 erg/°k

number of degrees of freedom per particle

internal thermal energy per unit mass
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_(_) _ enthalpy per unit mass (specific enthalpy)

(,)
_v

P

entropy per nnit mass (specific entropy)

constant volume specific heat referred to unit mass

constant pressure specific heat referred to unit mass

_(_) _ ratio of specific heat = (Cp/Cv)(_)

We note that because u(±) and_W(_) are referred to unit mass,

(mu)(_) and (_4_)(i) represent respectively the internal thermal

energy per particle, and the enthalpy per particle.

By definition

PV l is_ the amount of work that could be done by the gas surrounding

a bubble of unit mass of the gas if this bubble were removed (or

its molecules cooled to absolute zero) and the surrounding gas

allowed to move in and occupy the space that had been occupied by

the bubble. (We assume, of course, that the bubble is so small

compared with the surrounding atmosphere of gas that, when the

surrounding gas moves in to occupy the space previously occupied

by the bubble, the pressure _ of the gas does not change
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significantly. Because the energy PVl, as well as the energy u,

is theoretically available for conversion into work, k, rather than

u, is to be regarded as the potential thermal energy associated

with a bubble of unit mass of the gas. (Because the energy PV l is

really provided by the gas surrounding the bubble, rather than the

gas within the bubble, it would be more accurate to say that_is

the potential thermal energy to be associated with the resion of

space occupied by the bubble_)

The above argument indicates why_is often referred to as

"the heat function" andis regarded as the total thgrmal energy

content of the gas. It is not surprising that, as we shall see

below, m_ rather than mu, is the thermal potential energy of the

particle, analogous to the gravitational potential energy mg,

where g is the gravitational scalar potential.

Further intuitive support for the idea that it is_, rather

than u, that plays the role of a thermal potential comes from the

fact that, for adiabatic flow of a gas through an insulated pipe in

which the gas performs no work, the governing equation has the follow-

ing form: kinetic energy ÷._ potential energy + enthalpy = constant.

Thus the enthalpy enters the equation in the same way as potential

energy. In the case of large-scale adiabatic convection flow within a

fluid, we may think of the fluid as flowing in pipes whose walls are
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defined by the flow lines.

The above arguments are intended only to provide an intuitive

understanding of the results ensuing from the formalism below,

but no use will be made of them in the formalism.

We now postulate that both charged fluids are perfect gases.

Thus the following relations are valid:

C+_) k

p_.p ,,C.v + m --_re(t) m(__)I+ _ _(_+)

-- - I+

(2-2a)

(2 -2b )

(2-3)

(2-4)

(2-.5)

p(+) : k ("f' T) (+_.) (2-6)

A,'(±) = A.v_T - _.,¢,M f . co_ta_t C+-) (2-7)
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We choose i.$_,i__) and Q(±) as our thermodynamic variables,

and note that the other quantities can be expressed in terms of

_.h_:Ovariables as follows :

(2-8)

(2-9)

(2-zo)

k

From (2-1) we have

_,. _ i "b,j. P];_z'p<.:,..:>-- [(8_u + P"_.v,) + E_ (_) (2-z2)

where we have used the fact that, by definition

V, (-'-')
= (.('"_) c±._

(2_.:L._)
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Since _ u + _Vz is the heat injected into unit mass of ithe

gas during the change indicated by the increment symbol _ , we

can interpret ( _ _ ) ( _c)jZ_ + P\_" Vi ) as the heat injected into

unit mass of the gas during the virtual displacement (in time or space)

described by _i a. Thus "_ + P_ V1 can be regarded as the

O

4-force per unit mass caused by heat injection. Let QJ be this

force. Thus

Q<._)= I]b<& + fl v,]<_) (2-14)

fo,,Q', ,Li, d 1_ , ..... ,,! _j.<

f_ I!o'¢s

- - f - C_ q i](.)
(2-15 )

Substituting (2-14) into (2-12), we have

- Ic_ q,}+ (__) (2-16)

In order to exploit this relation, we shall introduce a

V

variable particle mass :_'_(_) , defined as follows:

(2-17)
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where g is the gravitational potential. Thus _v_(_) is the total

particle mass, taking the mass associated with the gravitational

and thermal energy as well as the rest-mass,into account. Be-

cause, in the situations in which we shall be primarily interested

(e.g., the interior of the sun)#the positive thermal energy is in-

sufficient to overcome the negative gravitational energy, we shall

refer to _C±) as the "bound particle mass" and _(±) as the

"free particle mass"

From (2-16) and (2-17), we have

The significance of this relation becomes apparent when we note

that the three terms on the right are the force-per-unit-volume

terms that appear in Euler's equation. (Equation (2-18) has been

written in contravariant form to emphasize that this, rather than the

covarlant form, is the ganeralization of 3-force.)

Euler's equation for the charged fluids has the following form:

(2-19)

where

,(±) 7£ proper time
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_ magnitude of particle charge (always positive)

F_k_ Maxwell field tensor

In terms of the electric field intensity E and the magnetic flux
-;p

density B, the tensor F jk is defined or follows:

(statvolts/cm)

(2-20)

F _k= - F k;

where the units have been given to indicate that we shall use

Gaussian units throughout, _ii dynamical quantities will be ex-

pressed in cgs absolute units.)

Referring to (1-2), we note the following:

__ . -- 4- /u-- (2-21)

Using (2-20) and (2-21), we can write (2-19) in the more familiar

three-dimensional form:
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where

(2-23)

The physical interpretation of (2-22) is immediately evident

_ owhen we recall that _ and _ are respectively particle density

and particle mass in the observer's reference frame. (@_qc@ )(±)

obviously represents the rate at which energy is injected per unit

volume by nuclear or other reactions, and/or the heat energy

generated by fluid viscosity, and ( _w_ _ )(±) represents the

viscous force, and/or the effective force resulting from heat in-

jection caused by nuclear or other reactions.

The advantage of working with specific enthalpy becomes apparent

when we substitute (2-18) into (2-19):

(2-24)

We have assumed in writing (2-24) that _C_) is everywhere non-zero,
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so that it is permissible to divide an equation through by it.

The advantage of (2-24) over (2-19) is two-fold: First• we

have eliminated QJ[_) from Euler's equation• and transferred it

instead to (2-15) which maybe regarded as a "thermal field equa-

tion" on a par with the gravitational and electromagnetic field

equations. Thus, regardless of whether or not we introduce fluid

viscosity or heat injection by nuclear reactions• we can always
k_

regard (2-24)• with W_ Q+_) defined by (2-17), as the governing

fluid dynamical equation for each charged fluid. In fact, this is

true even if we drop the postul&te that the charged fluids are per-

fect gases. Second• _(_) does not appear in (2-24), which has

the form of a single-particle equation. This would appear to allow

us to solve first for _J
(_+) without concerning ourselves about

(_) and then• knowing 24 _ we would find _(+) from(+-)

the continuity equation :

whose three-dimensional form is

(2 -25 )

- 0 (2-26)

In actual fact, of course• _(_) enters into (2-24) implicitly

through _:_(±) which• as we see from (2-15), is a function of
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In t_
an iteration solution, however, we may regard _(_) as a

specified function of the space-time coordinates. In such a case,

use of (2-24) allows a separation of the solution of _(_) and

(±) whereas (2-19) does not.

Thus far we have not introduced the assumption that our fluid

flow is reversible. If we now introduce this assumption, we have

the following relation:

(2-27)

Using this, we can integrate (2_15) to obtain the following ex-

pression for £ (_:) :

(reversible flow)

where _(_o"t:) and ____r* are the density and specific entropy

respectively at a certain fixed point /_(o) in space-time (and

hence constants). H(+9 and H (_) are two constants that must be

specified as part of the boundary conditions of the problem. 0b-

viously,

(2-28)

J
(2-29)
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Thus, the constants : HQ,) and _(,) can be determined from a

knowledge of the fluid temperatures at the point /_(@.

The equation (2-28) may be used as the "thermal field equation"

in preference to (2-15). Equation (2-15) has the advantage, how-

ever, that it is valid even when condition (2-27) is not satisfied.

If, for example, we wished to introduce viscosity into the problem

by requiring that _ be a suitable function of the derivatives

of _ _ then in general (2-27) will not be satisfied. In such

a case (2-25) would not be valid, whereas (2-15) would•

We have indicated the way in which viscosity or heat injection

through nuclear reactions would be introduced into the problem by

specifying an appropriate functional form for _ (+) . We have

shown that such a procedure would in no way alter our basic dynamical

equation (2-24). 0nly the "thermal field equation" (2-15) would be

altered• The ultimate purpose of this paper is to find a spinor

alternative to the vector equation (2-24), and the way we choose

handle _i±) makes no difference in the form of this equa-to

tion. Both for the sake of definiteness, and because we noted in

Section I that the adiabatic case was a sensible first step of a

two-step process for solving the total self-excited dynamo problem,

we shall now introduce the adiabatic condition:

(adiabatic condition) (2-3o)
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In Appendix A several alternatives to (2-30) are discussed,

but for the rest of the body of the paper we shall assume that

(2-30) holds. Thus the "thermal field equation" (2-15) becomes

(adiabatic case )

and its integral is

(adiabatic case )

We may use either (2-31) or (2-32) as our adiabatic "thermal field

equation".

Now we note that if the following relations are valid

(2-31)

(2-32)

]'(+)= _(_) (_-33a)

H){.; H){_)

then it follows from (2-32) that

(2-33b)

(2-3}c)

(2-34)
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and from (2-8) and (2-9) that

p p(.) _ (_) (2-35 )

and

(2-33a) is valid because the electron and proton gases are both

monatomic gases. The approximate equality (2-33b) will be maintained

automatically by the electrostatic screening effect. (2-33c) must

be imposed as a boundary condition. From (2-2_)and (2-29) it is

evident that this amounts to requiring that the electron and proton

temperatures be approximately equal at a particular point in space-

time (e.g., the center of the sun at t = 0). (2-35) and (2-36)

then tell us that the two pressures and temperatures are approximately

equal throughout space for all time. The significance of this

statement is that, even through our way of formulating the problem

in terms of two independent specific enthalpies h_(e) and h__)

would at first glance appear to let the electron and proton pressures

and temperatures differ wildly from each other, in actual fact

(if we impose the boundary condition (2-34)) the two pressures and

the two temperatures are automatically constrained to remain very

(2-36)
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nearly equal to each other. This is a satisfying state of affairs

since we know that because of particle collisions the two tempera-

tures cannot differ greatly.

Tensor Alternative to Euler's Equation

Equation (2-24), which is the form of Euler's equation that

we shall use throughout, is a 4-vector equation. We shall now de-

rive an alternative equation in which all the terms are antisym-

metric tensors. This is most easily done by starting with the

three-dimensional form given in (2-22b) (except that the bracket

on the right is replaced by--[_(__d the term [_. _(_o_)_(_)

on the left is transformed by means of a well-known vector identity):

(2-37)

It can be shown that (2-22a) results from the dot product of both

sides of (2-37) with _±).

Now we note that if we impose the condition

Vx - ¥ (2-38)

(2-37) reduces to

_t
(2-39)
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These two 3-vector equations can be combined into the following

single tensor equation:

This is the tensor alternative to Euler's equation (2-24). Regard-

FJking m and as fixed functions of the space-time coordinates,

(2-40) is a linear equation, whereas Euler's equation is nonlinear.

The linearity of (2-40) is spoiled, however, by the fact that we

must maintain the normalization condition (1-3) for the 4-velocity:

Thus we must still contend with the algebraic nonlinearity of (2-41).

In the case of Euler's equation, the condition (2-41) must also be

satisfied. In addition, we have what we might term a "differential

nonlinearity" in Euler's equations itself because of the presence of

the term (_)_(±)._ Thus, by replacing (2-24) with (2-40),

we have rid ourselves of the differential nonlinearity, but are

still left with the algebraic nonlinearity (2-41).

It is evident that the tensor equation (2-40) is not exactly

equivalent to Euler's equation, because it corresponds only to the

subset of solutions of (2-37) that satisfy the condition (2-38).

(2-4o)

(2-41)
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Either we regard (2-37) as more fundamental than (2-40),with the

result that by working with (2-40) we are excluding physically

meaningful, and perhaps important, solutions from consideration;

or, we take the point of view that (2-38) is a phyaically necessary

condition, and the solutions of (2-37) that do not satisfy (2-38)

have no physical validity. In order to help convince ourselves

that the latter situation is actually the case, we shall first

investigate the physical meaning of condition (2-38).
o

TO this end, we let F _ [_]/v[_)= ° be the magnetic

field in the local fluid rest.frame.

Then from (2-38) we have

X _ -_

=o (_+) _u:_c
(2-42)

The left-hand side is the fluid vorticity. The presence of vorti-

city means that at the microscopic level the fluid can be regarded
O

as rotating like a rigid body with the angular velocity /-_<±) where

(2-_3)

Thus we have

_ra.(+_)-- Yz" c (2-44)
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which is just the l_rmor Condition. The physical interpretation

of this condition is that there can be no local vorticity_or rota-

tion, in the charged fluid without a magnetic field to provide, via

the Lorentz force, the necessary Coriolis force.

From (2-38) we note that large_scale vorticity (Af _ 0 ) is

possible even in the absence of a magnetic field, because then the

gravitational force and/or the pressure gradient can provide the

necessary Coriolis and centripetal forces.

Thus we see that for a charged flui_____d,(2-38) is a physically

necessary condition. It must be emphasized that the Larmor Condi-

tion is necessary for a fluid, but not for a single particle. In

the case of a single particle moving in a circular orbit, for

example, the condition relating angular velocity and magnetic field

is that the Lorentz force must provide the necessary centripetal

force. This conditionjwhich defines the so-called cyclotron fre-

quency, is identical to (2-44) except that the factor _ is absent

in the denominator on the right. The Euler equation guarantees

that this condition is fulfilled, since it is just the generalization

of the condition on the Lorentz force for arbitrary particle orbits.

In the case of a fluid, we must allow for the fact that, in

addition to the rotational velocity which requires a centripetal

force, there is a random thermal velocity which#together with the

rotation of the fluid, g±veS rise to a Coriolis acceleration which
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must also be taken into account. For given angular velocity, the

required centripetal force is proportional to the size of the

/

fluid vortex being considered, and so vanishes in the limit of zero

vortex radius, which is the limit involved in the evaluation of

_X _" in (2-43). The Coriolis force, however, remains finite

in this limit since the thermal velocity on which it depends is

independent of vortex size. This is the reason why, for a fluid,

the Lorentz force must be equated to the Coriolis force alone.

We noted that, in the case of a single particle, the Euler

equation itself guaranteed that the Lorentz force would have the

proper value in relation to the characteristics of the particle

orbit. In the case of a fluid, however, an extra side condition,

namely (2-38), is needed to guarantee that the magnetic field

strength will have the proper relation to the vorticity. The

reason for the need for an extra side condition is that this

condition arises from the presence of thermal velocity, which is

not represented in the Euler equation. (0nly the energy of thermal

motion is represented via the enthalpy, but the detailed momentum

and force considerations associated with thermal motion _namely the

need for a Coriolis force - cannot be represented in Euler's equation.)

Thus, we conclude that the solutions of (2-37) which do not

satisfy the condition (2-38)_and hence are lost when we use (2-40)

instead of (2-37), are those corresponding to an absolutely cold
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fluid with no thermal motion. In such a case there is no need to

impose the Larmor Condition, and the problem of calculating fluid

flow is no different from that of calculating particle orbits. If,

however, thermal motions are present in the fluid (i.e., _ On),

the Larmor Condition must be imposed. Except for this extra side

condition, the fluid problem is still the sameas the problem of

calculating particle orbits (except that we must introduce the

thermal potential_), since solutions of the tensor equation (2-40)

are always solutions of (2-24), which has the form of a single

particle equation.

Wehave used above a physical argument to cmnvince ourselves

that the tensor equation is more fundamental (for real fluids)

than Euler's equation. In the next section we shall use a more

formal argument to arrive at the sameconclusion, in that we shall

showthat the Hamilton-Jacobian formulation of the magnetogas-

dynamical problem leads to the tensor equation, rather than to

Euler's equation. To simplify the discussion, as well as to lend

it greater physical significance, we shall present the Hamilton-

Jacobian formulation as the incorporation of the de Broglie Hypoth-

esis_ _egarded as an experimental fact, into the form_!ism.



Sec. Ill 40

III HAMILTON - JACOBI FORMULATION

We take as our starting point the following well-known ex-

pression for the canonical particle momentum _ in the presence of
f

an electromagnetic field represented by the 4-vector potential AJ:

The feature of the Hamilto:t_-Jacobi formalism that is vital :

to our present considerations is the fact that _J can be repre-

sented as the gradient of a scalar function %, which is Hamilton's

Characteristic Function. Thus

- - b

or, in three-dimensional form

I_(*) :-- <:-7 3 i: (3-3a)

(3-3b)

_rom the point of view of the }Jamilton-Jacobi formalism, (3-2)

is part of a contact transformation that carries the ]lamiltonian

function over into a form that allows an easy solution). It is

physically more significant, however, if we take the point of view

that (3-2) is just the expression of the de ._roglie Hypothesis,
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which we regard as an experimental fact that must be incorporated

into our theory. In its usual form, the de Broglie Hypothesis

states that for every particle there exists a scalar function

whose gradient is the particle momentum. In order to adapt this

statement to a fluid_ it is necessary to impose the requirement

that _ be a continuous function of the space-time coordinates.

Thus_ in the same way that the fluid picture of a gas (as opposed

to the kinetic theory picture) requires that the fluid velocity

must not vary in a rapid and random wayj but rather must be a

smoothly varying function, we require that the phase function

of the fluid must also be a smoothly varying function. This con-

tinuity postulate is implicit in (3-2).

Substituting (3-2) into (3-1), we have

_ J •- _ _c_ (_c _ "_(_+- _ A_

Taking the curl of (3-4), we have

_(_ _)(_I-_(_ _±I = ¥ ¼ (_A_- _A_) = T _ F_

where we have used the fact that the curl of A _ is the Maxwell

Fakfield tensor . This equation is just the tensor alternative

(2-40) to Euler's equation that was introduced in Section II. As

was noted there, this equation (like Euler's) must be supplemented

(3-4)

(3-5)
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by the continuity and normalization conditions:

e

<uj --I

If we solve (9-4) for Z[_±] and substitute into (]-7)

obtain

(3-6)

(3-7)

we

(34)

and

_.o_- --_ (_): o (3-10)

which is just the well-known Hamilton-Jacobi equation.

If we regard _ and _<_)as given space-time functions, then

in principle we can solve (3-_{) for _(__) and use this in (3-4)

to find %4(@# which would then automatically satisfy (3-7). (It

would still be ne_essar,v to impose (3-6).)

Alternatively_ we could ignore (3-8), and regard (3-5) - (3-7)

as our basic system of equations.

To :return to the question of weighing the tensor equation

(3-5) against Euler's equation (2-24), we note that if we contract

(3-5) with _j, and use the relations

z{_ - _- 7-i (3-9)
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the result is

- ±
k v 2._ + ,_k.b <

= %h (3-11)

which is just Euler's equation.

Thus we have seen that it is the tensor equation_ rather than

Euler's equation_ that results from the Hamilton-Jacobi formulation

of the problem_ and that Euler's equation (which is nonlinear)

results from the tensor equation (which is linear) by contracting

the latter with _j. It is this contraction process that introduces

the _a__J._:'h.i<!._, in _ and _he_ce the nonlinearity_ into

Euler's equation. Thus the nonlinearity of Euler's equation can

be regarded as physically spurious; resulting from the unneces-

sary contraction of the tensor equation with_.
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IV FIELD EQUATIONS

It was noted in Section I that the purpose of this paper is to

transform the dynamical half of the magnetogas-dynamical problem,

replacing Euler's equation by a spinor equation. The source

equations for the electromagnetic and gravitational fields will

be just Maxwell's equation and the four-dimensional Poisson equa-

tion respectively. In order to define the notation and to provide

a convenient reference, the relevant field equations will be briefly

discussed in this section.

Electroma_netic Field

The definition for the elements of the Maxwell field tensor F Sk

in terms of the electric field intensity E and the magnetic flux

density _ has been given in (2-20). The four-dimensional form of

Maxwell's equations (in ,_:Un_ationalized Gaussian units) is

F

where _ = 4.802 x I0 -in statcoulomb is the magnitude (always

positive) of the electron and proton charge, and (@_k)(9 and

(_k)(.) are the flux densities of the proton and electron gases

respectively. The three-dimensional form of (4-1) is

\,. _,+) (-)

(4-1)

(4-2a)
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(4-2b)

The field tensor _is :related to the 4-vector potential in

the usual way:

F_k = _A k_ -_A _ (4-3)

The vector equivalent of (4-1) is

where _ is_d'Alembertian operator defined in (1-6). The choice

of gauge in (4-4) has been left arbitrary.

Let _k be the dual to _k. It is defined as follows:

Ik'

F_ _k_ C_k__ F_ = _A_

(4-4)

(4-5)

where is the antisymmetric unit tensor defined at the end of

Section I. Using (2-20) we have

# , )=(B,, ,

(F",F",#")= (_-,,-,_"1,E,): E (4-6)

From (4-5) we have
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Using (4-6), we have for the three-dimensional form of (4-7)

'_' B ---- 0 (4-.8a)

-E + _' _ = 0 (4-.8b)

which, together with (4-2), constitute Maxwell's equations in three-

dimensional form. We note that the equations (4-8) follow directly

from the introduction of the 4-vector potential; that is, these

equations are the justification for introducing the 4-vector

potential.

We remark, incidentally, that using (4-5), it is easy to

show that (4-7) can be written in the following alternative

form:

"64"F k'_ 4- + F "_ = 0 (4-9)

We note that, because of the antisymmetry of _ the left side of

this equation vanishes identically when any two indices have the

same value.

E._kLet be the electromagnetic stress-energy tensor. As is

well-known, it has the following form:

- F , (4-1o)
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Jk

where _ is the metric tensor specified in (i-i). Thus _EJ'_may

be regarded as the square (in the sense of matrix multiplication-)

o__e_ ,en--o_FJ_ ' _ F_' )plus the diagonal tensor _- ( F_

where, using (2-20), we find

Using (4-10) and (2-20), we find the following well-known

Jk
expressions for the elements of E :

°° _)"-- _(_at _ electromagnetic energy density (4-12a)

_.(E°',E , _°') : C(E'°,E"°,E'°)-

electromagnetic bnergy flux

density (Poynting's vector)

(4-12b)

EA [ -_K ' _+ 8J5k)7-----"-- E°°_ Jr _(E JE = electromagnetic
-J stress tensor

(4-12c)
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Ca',

Using the fact that

]

it is evident from (4-10) that

(4-12_)

(4-13)

E_ ; - 0 (4-14)

Using (4-1), (4-9), and (4-10) , we find the following well-known

relation:

The time-like part of this) which is the statement of the conserva-

tion of energy_ can be written as follows:

E 00 _ --_ -_. _

'a_:

The expression on the right side represents the energy transferred h

per unit volume fro____mmthecharged flflids t__othe electromagnetic

field.
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Gravitational Field

We postulate the following source .equation for the scalar

gravitational potential _:

where _ = 6.668 x 10-8 dyne cm_/gm _ is the gravitational constant.

For the time-independent case in which the mass on the right

is distributed with spherical symmetry, we find for (-_)_ which

is the gravitational force per unit mass, the following:

where _ is the unit radial vector, and M s is the total mass con-

tained within the sphere of radius F • This. of course, is just the

familiar Ne,_tonian gravitational force. Thus (4-17) corresponds

to a suitably covariant extension of Newtonian gravitation.

Because we are employing scalar theory, however, rather than

a tensor theory as in General Relativity (in which the symmetric

metric tensor effectively plays the role of a gravitational

potential), we must expect to find that the velocity dependence

of the gravitational force on a moving mass is not correct to

higher orders of _ . Moreover, since only the rest-mass appears

on the right side of (4-19), our scalar theory neglects the

(4-17)

(4-1s)
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gravitational effect of the mass arising from the thermal, electro-

magnetic I and gravitational energy of the electron and proton

gases. However_ these errors are negligible in most magnetogas-

dynamical problems of physical interest.

Let _k be the stress-energy tensor of the scalar gravitational

field. It has the following form:

= 'I¢ -'
#

That this is indeed the correct expression for G _ can be verified

by calculating B_ G _k:

= '- (_ _"_}-C_)(_)_
(4-20)

The right side of (4-20) is just the negative of the gravitational

force density acting on the two fluid fields. This is completely

analogous with (4-15) in which the right side is the negative of

the electromagnetic force density acting on the two charged fluid

fields.

From (4-19) we find the following expressions for the elements
t

of _k:

OO_ I

_ gravitational energy density

(4-21a)
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°,Go0 °_ G_ _ _

_" _ _ gravitational energy flux density

c-i_ '---,_-_ -Iv. '_...._-(_J_.. +C IC_ '.,- ',,
(_ k "-I_ Z_ 3) :. gravitational stress tensor

>k"

:. -_ ; . . t L _ ._ ; .'.,-_LI .

Erom [4_13) and (4-19) we find

(4-21b)

, ) (4-21o)

(4-22)

Finally, we note that the ti_-like component of (4-20),

which is the statement of conservation of energy, can be written

as follows:

where the right.and side is just the energy transferred per unit

time per unit volume fro_.__mthe two fluids t._oqthe gravitational field.

(4-23)
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V SPIN EFFECTS

As was noted in Section I, we must take particle spin into

account, not because it is physically significant in magnetogas-

dynamical problems, but rather because it is the price we must

pay for the benefits of using the spinor formulation of the problem.

Magnetic Moment

Spin makes itself felt in two ways: through its magnetic

moment, and through its angular momentum. We shall consider

first the effects of the magnetic moment.

Let the direction of the magnetic moment of a particle in its

rest-frame be specified by the 3-vector _-_!_, which can be generalized/ .

to the 4-vectorl_<±> by specifying that the time-like component

be zero in the particle rest-frame. We specify the magnitude of

the magnetic moment of a particle by the scalar/_C±)" (We allow

the possibility that,_ is not a constant s but rather a function of

the fluid and field variables. In Section VIII we shall see that

the functional form of/_'C_ is automatically specified by the

spinor equations.)

The magnetic moment of a particle may also be described in

J'k_ Sk

terms of the antisymmetric tensor __/_ J(±)wherel_(_)is derived
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f

j j"

from/_(±) and the particle 4-velocity _(±)as follows:

Jk jk2_

Thus

(m ; (+-) C+)

where in (5-2b) we have made use of the fact that_×;=;x,_ _ )

follows directly from the form of the Lorentz 9ransformation.

(5-2a)

which

Since _Q is just the particle density in the observer's frame,
I

(5-2a) tells us that the space-space part of _/_kis-- just the

magnetization of the fluid. We note that the cross-product in-

side the brackets on the right side of (5-2b) is just the well-

known electric dipole associated with a moving magnetic dipole.

Thus, even though electrons and protons have no electric dipole

moment at rest_ a spin-dependent electric polarization of the fluid

is possible when there is motion.

Now we know that in a magnetized body there is an effective

current density given by the curl of the magnetization. By

analogy_ we would expect a 4-momentumdensity to be associated with

J
the angular momentum density arising from particle spin. If _(z)
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is this extra 4-momentum densitydivided by _, i.e. the extra

momentum per particle, then (3-4) must be replaced by

a

4
(5-3)

The form of this equation indicates that _it should be pos-

sible to absorb _(_m) into the 4-potential, i.e., to express the

spin effects as a small correction to the electromagnetic field.

In order to be thorough about this, we must keep in mind that every

particle has a contribution to its rest-mass _(±)arising from

the interaction of the magnetic field and the magnetic dipole
O

G

moment. If and (_/_)(_)are respectively the magnetic field and

the magnetic dipole moment in the particle rest-frame, then the

magnetic contribution to the particle rest-mass is

. o jk)(- _ L (/_/_) g' = _ (/_# F. (5-4)Alm(_+) c_" (:_). a- _.c _" +) ak,

where, in the second step, we have made use of (2-20) and (5-2).

If we wish to express the spins effects in terms of a small

Acorrection
_(±) 4-vector potential , then we must introduce

j_
a corresponding correction _(__) to the field tensor _kwhere, in

analogy to (4-3), we have
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_nalogous to (2-20), we can define corrections e (__)and 5(± ) to

the electric and magnetic field intensities E-'_and _as follows:

(5-6)

_k
If @(_) is to be regarded as completely analogous to F jk,

then it should produce a contribution _(_ to the particle rest-

mass having the form of (5-4) with F_ replaced by__ :

(5-7)

Let V_(+] be the total magnetic contribution to the particle rest-

mass. Then

(5-s)

If we regard 7A(±), (/_X_ _(t)' and _(±) as known functions,
J

then it is evident from (5-3) that 0_(._) is determined by the condition
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where from (5-5) and (5-8) we see that _(±) is a function of the
i

derivatives of _±). Thus (5-9) is a first-order differential

In actual fact, it will not be necessary to
equation for _(_).

solve such an equation since, as we shall see in Section VIII, the

J
spinor equations give us an expression for _(_ that automatically

satisfies (5-9).

If we let _(_ be the total particle rest-mass, we have from

(2-17) and (5-8)

_(_I = _±_+_(_

Substituting (5-9) and (5-10) into (5-3), we obtain

(5-1o)

(5-n)

This way of formulating the dynamical effects of spin gives

us an immediate intuitive feeling for these effects. Moreover

it provides a neat way of determining when these effects can be
!

neglected: If we can show that l&_(,_)I<_ IAJI,then we know that

the dynamical effects of spin are negligible. We shall see in

Section Vlll that it is very easy to estimate the magnitude of the
#

_±)that results from the spinor equations, and that, in all

magnetogas-dynamical problems on a laboratory or astronomical scale,

_.t+_is completely negligible compared with the magnitudes of _
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encountered in such problems. If, however, we were to attempt to

apply our spinor formulation of magnetogas dynamics on an atomic

or nuclear scale, then it turns out that the spin effects represented

by the effective potential&_±) would be far from negligible.
m •

We note that in general_+]_ a __) . This is not surprising

since the correction potentials a ) and _ _) have their origins

in dynamical effects of the spin fields (_/_J) C_) and (C/_-]__) which

are in general different. From a purely formal point of view. the
0

equations that follow treat_J(+), for example, as an electro-

magnetic field which produces a self-interaction within the proton

gas, but which produces no interaction between the electron and

proton gases. Similarly for __). In this respect, the effects

of _(±) are analogous to the behavior of the exchange forces in

quanthm mechanics which act only between identical particles,

and not between unlike particles.

To complete the derivation of the dynamical equations including

the effects of spin, we take the curl of (5-11), and arrive at the

following:

• k P _ •

(5-12)

This is just the generalization of the tensor equation (2-40).

Contracting (5-12) with _?), we arrive at the following generalization
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of the Euler equation in the form (2-24):

(±)

Fluid Stress-Ener_rv Tensor

As a preliminary to introducing the stress-energy tensor for

each of the two fluid fields, we multiply (5-13) by _) and write

it in the following form:

5¥ _(+)+? ae

(5-13)

g_
where (__)is the force density acting on the proton or electron gas:

_o_e_e_e_u__re_-ener__ensorT(__o_e_er_o
proton or electron gas as follows:

& j &

I

Jk
where the tensor t (I) contains all the spin dependences. We impose

Jk
the following condition on t(±) :

(±)= _(_) (5-14)
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(In Section Vlll we shall see that the spinors equations specify the

Jk
functional dependence of t¢_ in such a way that condition (5-17)

is automatically satisfied.)

We augment (5-17) with the continuity condition:

These two conditions, together with the definitions (5-16),

suffice to guarantee the validity of the following relation:

(5-1s)

(5-19)

This equation, which is identical with (5-13) when (5-17) and

(5-18) are taken into account, is the justification for regarding

the tensor defined in (5-16) as the fluid stress-energy tensor.

We now make the following identifications:

_o

fluid energy density =_ T (±) (5-20a)

fluid energy flux density __ _±) _ C-CT °i (5-20b)T
)

"-_ ',_ t)_ Z (T';T ;T' 5-20c)fluid momentum density-_.,,_(±_ __(/_

In terms of these quantities, (5-19) can be written as follows:
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(5-21b)

These equations are the justification for the identifications

made in (5-20).

Fluid Angular Momentum Tensor

If the spin angular momentum density of either the proton or

O_K_
electron gas is designated by_(±_, and the total angular momentum

density of either charged gas by,,,(_+j,then

N'l (±) -: "'_'(_a + "g L -._. (5-22)

The intuitive significance of this definition is more apparent if

it is written in the following form:

(5-23)

where

(5-24)

(5-25)

(5-26)

and (±) is defined in (5-20c). The ]-vectors (±) and _(+)are

the quantities to be regarded respectively as the spin and total
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angular momentum densities,

are necessary for a covariant formulation of the theory.

The conservation of angular momentum requires that

ing condition be satisfied:

The integral form of this equation makes its significance more

apparent. To derive this we first write the space-space part of

(5-27) as follows:

but the complete tensors_(±)and _/_(_)

the follow-

(5-27)

_(±1 4"- C "_t ['Tk(+) _- FK _-_(±) (_ = I_ z_ 3,,) (5-28a)

where

, (5-28b)

We integrate (5-28a) over the 3-volume _ contained within a

large sphere of radius _. Since the term involving _(±) is a

3-divergence, it can be transformed by means of Gauss' theorem

into an integral over the surface of the sphere. If the two

charged fluids are contained completely within the sphere, or if

their distribution is such that as _, the magnitude of _ on

the surface of the sphere falls off faster than _°_ then the

(5-28c)
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integral over all 3-space of the terms in (5-28a) involving _

will vanish and we are led to the desired result:

V3
where the integration extends over all 3-space. This equation

states that the time rate of change of the total angular momentum

of one of the charged gases equals the total torque acting on

the gas.

Substituting (5-22) into (5-27) and using (5-19), we arrive

,,o .
at the following condition on(±).

i

This shows that when a fluid has spin, its stress-energy tensor

cannot, in general, be completely symmetric. We shall see in

Section VIII that the spinor equations specify the functional

forms of_(_) and t (_) in such a way that the condition (5-30)

is automatically satisfied.

5-29)

(5-30)

Total Stress-Energy Tensor

From (5-15) and (5-19) we have

(5-31)
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where we have made use of (4-15) and (4-20).

J_

Thus

(5-32)

where

: T{+ 1+ T/4 - [P{._+ P_->]}J_+ G ;i_-EJ'_"

Obviously, _'i]'_ is the total stress-energy tensor of the entire

magnetogas-dynamical system including charged fluids and fields.

We note, incidentally, that using (2-1), (2-13), and (2-17)

we have

)t : + P) _'q,t'° _ .7_-,,(_>_-_ p_, _) (5-34)

where

(5-35)

is the energy density of the fluid in its rest-frame. The right

side of (5-34) is the usual relativistic form for the stress-

energy tensor of a perfect fluid (viscosity neglected).*

*See, for example, M611er (ref. I0) p. 182, eq. 104
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Wenow makethe following identifications:

total energy density _ "l_°

total energy flux density- _ _ __.(_I_I ,_-1_2. T 03,,)

total momentum density _ _---(_ ) &_

(5-36a

(5 -36b

(5-36c

In terms of these quantities (5-32) csn be written as follows:

P

"L@' = _

(5-37a

(5-37b

These equations, of course, are the justification for the identi-

fications made in (5-36)

We can integrate the equations (5-37) in just the same way

we integrated (5-28a). Doing this, we find

,'___ ff'f_tl_ ooM_ -- constant

"3

__V 3 -_- constant

(5-38

(5-39)
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where _ is the total energy of the entire magnetogas-dynamical

system, and"_ is the total momentum.

Total Angular Momentum Tensor

If _V__ is the total angular momentum density tensor for

the entire magnetogas-dynamical system, we have

Icl_ 2j_ _ _ _T _) (5-40)

The condition for conservation of angular momentum is

(5-41)

J'k J'k

where we have used the fact that_(_) and _(_) are the only parts
r

a_
of _ that contain any antisymmetry. Obviously, if the condition

(5-30) is satisfied, conservation of total angular momentum

follows automatically from the definition (5-40).

Integrating (5-41) over all 3-space in the same way we integrated

(5-27), we have _'_l_:_s following result:

_k= f_O_v3 _ constant (5-42)
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s

where_Jkis the total angular momentum of the entire system.

we define the 3-vector momentum _ aS

If

3 31 I
(5-43)

then from (5-42), (5-41), (5-36c) and (5-25) we have

1___ dV_ _I 1"_¢÷)*/_) + _×/_J_ V2 = constant (5-44)

It is possible to express the total angular momentum in

terms of a 4-vector _3instead of the antisymmetric tensor _J'_

once we have defined the 4-velocity_Jof the entire system.

If V is the 3-velocity corresponding to_ then by definition

i i¸

o

e

V J is defined in terms of and (¢_ _ as follows:

.4

From (5-45) and _5-_6), it follows that

v =

¢

l a' ; I_ a.j 3)

5-45a)

5-45b)

5-45c)

5 -46a)

5 -46b )

(5-47)
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where the quantity in the denominator on the right is just the total

mass of the system in the observer's reference frame. The square

root in the denominator of (5-46) corresponds to the rest-energy

of the entire system.

Using the 4-velocity defined in (5-46), we define the 4-vector

angular momentum_ as follows:

(5-4s)

In the rest-frame of the total system _D), we have

_o _ 0 1

(5-49)
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VI SUMMARY OF FOREGOING RESULTS

We have seen that the dynamical side of the magnetogas-

dynamical problem can be specified by the following system of

equat ions :

[ ]a(_ _,)
(6-1a)

(6-Lb)

(6-LG)

where

(6-!d)

(6-ie)

(6-1f)

or

We impose the adiabatic condition

0 (6-2s,)

(6-2b)
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where

i

where _are the coordinates

If the condition (6-2)

(6-2c)

of a particular point in space-time.

is satisfied, then

-- _ ÷ P(+) (+)

It is this relation which allows us to replace the force densities

in Euler's equation that are associated with gravitation, pressure,

and spin-field interaction by the particle density times the

gradient of the total particle rest-energy _¢_ O

specific enthalpy _)is the only thermodynamicThe f_nc-

tion we need know, since the other two thermodynamic flmctions

of principal interest, T(_) and _(_) , can be found from the follow-

ing relations:

and

We have seen that there exists a simplified alternative to

the system (6-1):

(6-4)

(6-5)
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Taking the curl of (6-9a) yields tlue tensor alternative to

Euier's equation:

• ' _k 7 (6_7")

Contracting (6-7) with _j yJe!ds Eu.ler _s equatio_ _i__.t,he form

6-,,J or _6-6aj zs a±s,_ a solution of(6-1a). Thus any solution of ( _'j _

(6-1a), but the converse is not in general true° Thus (6-6a) and

(6-7) correspond to a more restricted class of solutioms than

(6-1a). The source of this restriction can be stated in either of

two ways: (i) The restriction is just the req_airemer_t that there

can be no local vorticity in either charged gas without a _gnetic

field to provide the necessary Corioiis force arising from the

random thermal motion; or (2) The restr_ctio_q, results from the

requirement (3-2) that the generalized iparticle momentum m_zst be

the gradient of a scalar, which is just the incorporation of the

de Broglie Hypothesis into the formalism°

Obviously a choice must be made between +,he......_-"_s_L_e'+____)_"7"

and (6-6), and we have chosen in fs_vor of (6-6) w_zich is the

more fundamental formulation of _:gnetogas dynamics, because the



71 Sec. VI

added restriction it imposes is physically necessary for a charged

fluid with randomthermal motion.

Thus the fluid dynamical half of the problem is specified by

the system (6-6). The field half of the problem is specified by

the following group of equations:

or

(6-8a)

(6-Sb)

u A - = (6-8c)

(6-Sd)

Equations (6-8a) and (6-8b) are just the equations (6-2), and have

been repeated here to emphasize that we are treating_c±jas a

"thermal field" on a par with the gravitational and electromagnetic

fields represented by,and A _. We have a choice between (6-8a) and

(6-8b), and can use the one that is simpler for calcu!ational

purposes. We noted in (2-33) - (2-36) that if the constants _(+)

and _¢_) satisfy the condition

(6-9)
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then the electron and proton temperatures are everywhere approxi-

mately equal.

The stress-energy tensor_kof the entire system, including

both charged fluids and the fields, has the following form:

T_ _ _ _ _sk E&+ G_: T_ + T_) - [h+_+_-_] + (6-1o)

.#
where

_, ' _k

(6-ll)

(6-12)

(6-13)

These tensors satisfy the following divergence relations:

where

- f#
+_)-- (±)

(6-14)

(6-1_)

• + _,

< as =̀ - _.FJ'_[(c_&+)-Ce_,a__,]

(6-16)

(6-17)
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(6-18)

Equation (6-14) justifies the following identifications:

total energy density = _ o_ (6-19)

total energy flux density- _ - QC_ "I_I _Z "I_" _o3) (6-20)

total momentum density-_ "-_'(_I_I° _Z"I_'° _3o) (6-21)

The invariant trace of the total stress-energy tensor is

T _ -_ P)_+_+ __-_)___+_ _ _)U
(6-22)

where _(_)is the fluid energy density defined in (5-35).

If _ and _ are respectively the total energy and momentum of

a finite system, it follows from (6-14) that

constant (6-23)

constant (6-24)

where the integration extends over all 3-space. The 4-velocity _J'

of the entire system is defined as

_
= ¢#_F._-_¢.F_ -_

(6-25a)

j--I,z.,_# (6-25b)

which corresponds to a 3-velocity V given by

V - C_/_-'-)
(6-26)
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The square root in the denominator of (6-25) is the total rest-

energy of the system, and the factor (_/c_)in the denominator of

(6-26) is the total massof the system in the observer's reference

frame.

If_(__ ) is spin angular momentum density of either charged

fluid, then the total fluid angular momentum _/_(_ is defined as

follows :

(6-27)

This definition can be written in terms of 3-vectors as follows:

where

(6-2s)

r _- 3

(6-29

(6-30

(6-31

(_, .L o,onservaozon of fluid angular momentum requires that

(6-32
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where'(±) is given by (6-16). This equation is equivalent to

on_ _
the following condition _(±):

, (T_k , "k kj (6-33)

The definitioms for the total angular momentum density _k_

for the entire magnetogas-d_,_lamical system including fluids and

fields is analogous to i(6-27):

[_i._ -_(+_ +.Z___ + _

T_/e condition for conservation of total angular momentum is

which is automatically satisfied if condition (6-33) is satisfied.

The integral form of (6-35) is

or

where

Jk f ' constant (6-36)

(6-3_)
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It is possible to define a 4-vector total angular momentum _-_

'  ;ofin terms of the antisymmetric tensor _Jkand the 4-veiocity

the total system as follows:

_--J/ /

In the rest-frame of the total system (F_O_ havewe

o

for' V _ 0 (6-40)
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VII SP!NOR DESCR!PrlON OF A PARTICLE

Tetrapod Description

The particles with which we are dealing, electrons and protons,

have an internal structure characterized by a symmetry axis, as evi-

denced by the existence of particle spin and magnetic dipole moment°

They also possess a de Broglie phase_ which must be regarded as an

intrinsic property of the par%icleo Thus, for a complete descrip-

tion of a particle, in addition to its velocity, we must specify

the orientation of its symmetry axis and the magnitude of its

de Broglie phase. As illustrated in Figure _ this can be accom-

plished by means of a set of four orthonormal 4-vectors - one time-

like and three space-like vectors° This set of 4-vectors is called

the particle tetrapod.

Figure _ - Tetrapod Representation of a Particle
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The time-like vector of the tetrapod is the 4-velocity

(designated in the figure by the 3-velocity_). Oneof the three

space-like vectors_ is used to specify the symmetry axis of the

particle• The remaining degree of freedom, the angle _ needed to

specify the orientation of the other two space-like vectors k and

about the axlsju_, is measured between_ and a fixed reference axis

in the observer's frame of reference. The three 3-vectors _,X ,

and _ are, of course, the space-like parts of three 4-vectors, _

_, andS. In the particle rest-frame, the t_ne-like components

of these vectors are all zero.

We postulate that the angle _ is, to within a proportionality

constant, the de Broglie phase^_and we postulate the proportionality

constant to be _/_ where _ 1.0542 _ i0-_7 erg-sec is Planck's con-

stant. (The factor _ is necessary in order for the theory to yield

a particle spin angular momentum of_/_, which is regarded as an ex-

perimental fact with which the theory must agree_) Thus we have

(We shall later introduce the sign of the particle charge into this

relation, so that (7-1), like all the relations until (7-8), is valid

only for positively charged particles. For the moment, however, we

shall ignore the question of the sign of the particle charge.)



79 Sec. VII

It is with (7-1) that Planck's constant is introduced into the

theory. It should be emphasized, however, that in spite of the in-

corporation of the de Broglie Hypothesis into the theory which results

from (7-1), the theory is classical, rather than quantum-mechanical,

because no quantization process is introduced at any point.

From (3-2) and (7-1) we have

(7-2

In the particle rest-frame this becomes

O

where E is the particle rest-energyj _ is the space-like part of the

4-vector potential, and A_is the time-like part which, by means of

a proper choice of gauge, could be made to vanish. Thus we see that

the angular velocity of rotation of and _ about_ in the particle

rest-frame determines the particle rest-energy, and the spatial rate

of change in the rest-frame, when we go from one particle to another,
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determines the particle momentumin the rest-frame which is just _.

Since a knowledgeof the particle rest-energy at all points of space

amounts to a knowledge of the function_which determines the iner-

tial properties of the particle as well as its scalar potentials,

we see that a knowledge of _ at eve__ypoint of space-time contains

all the information necessary for a complete dynamical description

of the particle.

Unfortunately, the function _ is rather difficult to work with.

In the case of a distribution of particles all at rest with respect

to the observer, and having their_axes all aligned, • is easily

determined. In the general case, however, _ is one of three Euier

angles that describe the orientation of the particle tripod in its

own rest-frame, which in general is not the observer's frame. This

matter is discussed at greater length in Appendix B. For present

purposes, however, it is sufficient merely to appreciate the desir-

ability of introducing a function having the essential properties of

, but simpler to define and work with. From (7-2) we see that it is

really the gradient of _, rather than _ itself, that interests us,

so it will suffice to find a simply defined 4-vector uo that approx-

imates the gradient of _. (The choice we make for u0j will actually

approximate --_.) We define UOJas follows:

j , ,i ._
- _ _\__ _ (7-_j
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In order to see that

o3
we note that in the particular rest-frame, _ can be written

where_ is the gradient operator in the particle rest-frame_. Now

if one pictures two neighboring tripods whose orientations are nearly

the same (or a single tripod whose orientation is changing with time),

it is clear that the contribution to (7-6) resulting from a differ-

o

ence (or a time change) in the orientation of_ is very small com-

pared with the contribution resulting from the angular displacement

of and _ about . The fact that one of the two tripods we are

comparing may not be exactly at rest, but rather have a small veloc-

ity, makes only a very small difference in the right side of (7-6).

Thus, the value of _ is very close to what we would find in the

@

case for which all the tripods are at rest and have their/_ _ axes

aligned. This then is the basis for the approximate equality given

in (7-5).
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It should be emphasized, however, that this approximate equality

hss been introduced only to give an intuitive feeling for the phys-

ical significance of_ but no use of (7-5) will be made in the

development of the formalism to follow.

We conclude this discussion of the physical significance of _J

by noting that its time-like component is essentially the de Broglie

frequency of the particle, and its space-like part the de Broglie

wave-vector.

Rewriting (7-3a), we have

= (7-7)

0

Since the particle rest-energy _ must be positive, we see from Fig-
0

ure _ that the direction of rotation of_about_is given by the

0 0 O

left-hand screw rule. , andy, in that order, constitute a

right-hand system of axes.)

°
Now let us identify the direction of rotation of about, with

the sign_ (_=_i) of the electric charge of the particle. Thus our

discussion has so far concerned itself only with a positively charged

particle. In the case of a negatively charged particle, we assert
0

that the direction of rotation of_about_is given by the _-

hand screw rule. Thus, if the (+) and (-) subscripts or superscripts
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refer respectively to positively or negatively charged particles, the

foregoing relations are generalized as follows:

- + _ ~ (7-s)

(7-1o)

(7-_i)

\a T/<±)-
(7-12)

From (7-9) and (7-11) we have

(7-13)

and

a Q

0 o

_(+)_ -+_(+-__A= + [(±___! (7-1_.)
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Thus, in contradistinction to _ _a<±) which is always positive, _±)has

the same sign as the electric charge of the particle.

We now complete our tetrapod description by normalizing the

four 4-vectors to _(±_, the invariant particle density, rather than

to unity. In this way we have packed all the information we need for

a complete description of a charged fluid into the particle tetrapod.

Altogether this description involves seven degrees of freedom: three

forK, two fo , and one apiece for _ and _. Since each of the

4-vectors has four elements, however, our tetrapod involves a total

of sixteen elements. But it has only seven degrees of freedom. Thus

the elements of the tetrapod do not represent the "normal coordinates"

of the problem. This fact makes the tetrapod difficult to use in

any formalism.

We shall now show that it is possible to express the four

4-vectors of the tetrapod as bilinear forms of the complex elements

of two spinors, each having two components. Thus the two spinors to-

gether have eight degrees of freedom. One of these degrees of freedom,

the phase common to the two spinors, will be used to specify the sign

of the particle charge. (It is shown in Appendix C that this iden-

tification, together with the spinor equations of motion, causes the

o
direction of rotation of and _ about'to be dependent on the sign

of the particle charge, as indicated by (7-14).) If we regard the

sign of the particle charge as a degree of freedom, then we can assert
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that the two spinors together are completely specified by eight

real functions and, since the charged fluid has eight degrees of

freedom, the two spinors constitute the "normal modedescription"

of the problem.

Spinor Description

_ ?

As a preliminary to introducing the spinors that will be used

to describe °the charged fluids, we must first introduce the irre-

ducible form of a 4-vector. For reasons that will shortly become

clear, the superscripts and subscripts used to label the elements

of a 4-vector in irreducible form will not be the usual ones

(_---0, i, 2, 3). Rather, two indices e< andS, where o<= i, 2 and

_= i, 2, will be used. The overhead bar in_ indicates complex

conjugation, and we shall see shortly how the need for such a nota-

tion enters the formalism. First, we must define the irreducible

vector elements in terms of the ordinary (reducible;) elements. Using

the 4-vcc'/t_r_i'_)as an ex_ rlnle, and omitting for the time-being the

(1) _ubscript_ we have
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wloer e t ani<<

A

and _ and _are respectively the polar and azimuthal angles of a

system of spherical coordinates referred to the _ axis as pole.

It is obvious that, for a rotation of the coordinate system

A
through an angle A_ around the • axis, we have

-

(7-17)

where the primes indicate the values of the elements after the rota-

tion. Under this same symmetry operation, the components _land _

are not, however, s_mply multiplied by a constant as in (7-17)•

Rather they become shuffled, i e.. the expression for (_Z41) !• in-

Thus _I and
volves both _ _,_ and ,_ and similarly for C_) I
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_lare irreducible representations of the symmetrygroup of rota-

tions about the _ a±is, Whereas_I and _ I__are not. Similarly, _ ,T

and _1_Kare irreducible representations of the symmetry group con-

sisting of all Lorentz transformations in the _ direction, whereas

_14a and_3 are not.

It is well-known that the equations of physics assumetheir

simplest form when they are expressed in terms of irreducible quan-

tities. For this reason, the components_1_on the left side of

(7-15) are to be regarded as more fundamental than the usual com-

ponents _1 _.

We now introduce the two fundamental spinors _ and by means

of the following relation:

where

w

On the left side of (7-1e) we have arranged the elements of _ in

the form of a 2_ 2 matrix, and on the right side we have the sum

of two outer products in which the pre-factor of each product is a
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column matrix and the post-factor is the complex conjugate of this

column matrix written in row form, i.e., its Hermitean adjoint.

It is convenient, as indicated in (7-19), to designate com-

plex conjugation of a spinor element by meansof a bar over only

the index (_), rather than over the entire symbol for the element.

Thus, the indices _ = i, 2 and_=_, _ are regarded as entirely

independent_ i.e., it is not necessary in the case of _that,

for example,_ = i when_ _ I. A 4-vector in irreducible form is

characterized by one of each type of index. It can be shownthat

an antisyrmmetric world tensor of second rank is characterized by

either two barred or two unbarred indices. A symmetric world

tensor of secondrank is characterized by four indices, two of each

kind. In keeping with the customary notation, vector and tensor

indicesAover the values 0, i, 2, 3 will be designated by lower case

Romanletters, whereas spinor indices will always be designated by

lower case Greek letters.

(_)A commonlyused spinor notation employs a dot, rather than a bar,

over the index. This notation is appropriate when the spinor so

. ---designated,e.g._, transforms like _, but is not equal to

i.e., it differs from _ by a factor that is a scalar invariant.

In order to emphasize that _ _not only transforms like , but is

exactly equal to it, we use a bar over the index rather_ than a dot.
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In order to explain why two outer products, rather than just

one, are needed on the right side of (7-18), we note that, although

the spinor (or _j itself has four degrees of freedom, one of

these, nsmely the phase factor that is commonto both _i and _

is suppressed whenwe carry out the outer multiplication between _

and its conjugate _ Thus _ by itself can be used only to rep-

resent a 4-vector with no more than three degrees of freedom, i.e.,

a null vector. To represent an arbitrary time-like or space-like

4-vector, two spinors are necessary.

It is in the sense of the relation (7-18) that we may think of

spinors as the "square roots" of 4-vectors. In the sameway that,

when we take the square root of a real number, we get an extra de-

gree of freedom, namely the sign of the square root, we find that

the "square root" of a 4-vector has extra degrees of freedom. This

is Obviously the case because the 4-vector _J (or_) has four

degrees of freedom, whereas the two spinors_and _together have

a total of eight degrees of freedom.

The physical significance of these extra degrees of freedom be-

comesclear whenwe note that, having the two spinors and _ , it

is possible to generate the complete particle tetrapod as follows:
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(7-2o)

Thus the extra degrees of freedom are to be associated with the par-

J
ticle tripod (_J,- _,/_ ), and hence are the degrees of freedom

specifying the orientation of the spin axi sand the de Broglie

phase. The phase angle common to _and_ _, which does not make

itself directly felt in the generation of the tetrapod, will be used

to specify the sign of the particle charge. (In Appendix C it is

shown that this identification has the consequence that, for solu-

tions of the spinors equations of motion, the direction of rotation

of_and_about;is dependent on the sign of the particle charge.

It is only in this indirect way that the phase common to _and _

makes itself felt--viai_the spinor equations of motion--in the par-

ticle tetrapod.) F_nally, we note that it can be shown that the

tetrapod defined by (7-20) automatically satisfies the necessary

orthonormality requirements.

Equations (7-20) provide the bridge between the spinors _ and

_, which we regard as constituting the most fundamental description

of a fluid of charged particles, and the particle tetrapod in irre-

ducible form. To complete the formalism we need a bridge that
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conr_ects the spinors directly with the a-vectors of the tetrapod

expressed in the -_al form, rather than with the irreducible form

as in (7-20). To accomplish this, we first rewrite: (7-15) in matrix

form as follows:

(

(7-21)

We introduce the constant matrices _T._defined as follows:

m

__ ,

I

(7-22)

where, following the usual convention, the first index _ indicates

the row of the matrix, and the second index_ indicates the column.

These matrices, of course, are just the Pauli spin matrices. Using

these matrices, (7-15) or (7-21) can be written in the following

condensed form:
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¢_ = ¢-._SCe_s) /7-23/
.j

where, as always, a repeated index means contraction.

The matrices _r._ satisfy the following important relations:
0

(7-24a)

and

(7-24c)

where r_ _7' and _j are Kronecker delta functions, and the matrices

_/_ have the same form as the matrices 0_._,_ i.e

(7-25)

(Note that in the case of _ the barred index, which designates the

row of the matrix, is written first whereas, in the case of _, , it
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is written second and designates the colu_o ) Using (7-24b), it is

possible to invert (7-23):

J •

(7-26)

Multiplying the equations (7-20) by _ and contracting the E

ands, we arrive at the desired bridge between the spinors anti the

entire tetrapod in its usual (reducible) form:

s f

e m

(7-27)

Thus far we have used only contravariant spinors, whose indices

have been indicated by superscripts rather than subscripts. Knowing

the contravariant form of a spinor, we can define the covariant form

of this same spinor by means of the requirement that the contraction

of the two must be an invariant. Furthermore, this invariant must

be zero. Otherwise, as it can easily be shown, the invari_nt norm
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of the null vector that is the "square" of the spinor would have to

be non-zero, and this cannot be. Thus we define the covariant spinors

and_ as follows :

(7-2s)

Thus

--f<+f o (7-29)

Similarly

9(_ X _ = 0 (7-30)

The contraction of_ and2 _ is, however, non-zero.

(7-28) that

It follows from

(7-3z)

Thus raising one index in a contraction and lowering the other

changes the sign of the result. This is to be contrasted with the
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fact that whenwe do the samething with the contraction of two

4-vectors, the result is unaltered. For example,

h_ _A_ '

For a further discussion of the algebraic aspects of spinor analysis,

the reader is referred to the papers of van der Waerden (Ii),

Laporte and Dhlenbeck (12), and Bade and Jehle (13).

By means of the relations (7-27), it is possible to write the

components of _C_+) and _ for each of the two charged fields in(_+)

terms of the Euler angles that specify the orientation of the cor-

responding space-like tripod in the rest-frame of the fluid in ques-

tion, and in terms of the magnitude and direction of the fluid

velocity. This is carried out in Appendix B. However, for our

present purposes the complete result of Appendix B is not needed.

We only need to know that _(±)and _ (±) can be expressed in terms

of two normalized spinors _-_) and ._(+) as follows:

Z(a ec Z(_+)

(7-33a)

(7-3]b)
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where

and _(±} and_(_ are not functions of _, which means that they con-

tain none of the high-frequency (of order of the de Broglie frequency)

time or space oscillation associated with _, but only the slow varia-

tion associated with changes in fluid velocity and spin orientation.

From (7-33) and (7-34), it follows that

(7-35)

is the phase that is common to both _and_ _. It is obvious from

(7-27) that E has no direct effect on the vectors of the tetrapod.

Thus E is a disposable degree of freedom that we are free to use to

specify the sign of the particle charge. Thus we impose the following

condition on _(±):

CO_ C(±) : @---i (7-36a)

which is equivalent to

(7-36b)
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Thus (7-35) becomes

(7-37

The condition (7-36) is fulfilled if we impose the following con-

straint on our spinors:

(+_]
(7-38

where_ designates the imaginary part of the argument. The only

constraint on the real part of (_)(±) is that it have the same

sign at every point of space-time.

From (7-27) and (7-35), we have the following expression for

the 4-velocity _J'as a function of the spinors:

C+-)
(7-39

This identity is valid regardless of whether or not the constraint

(7-38) is satisfied. From (7-29)- (7-3]), (7-24), and (7-39) it

follows automatically that

(7-4o)
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Thus the _m)that we calculate from the spinors is automatically

normalized, and so when we work with spinors there is no need for

the troublesome nonlinear side condition that we encountered in

(6-ic) or (6-6c)_ _his is true even when the constraint (7-38) is

dropped which, as we shall later show, is permissible in problems

on a laboratory or astronomical scale.

Now let us estimate the magnitude of the error involved in the

approximate equalities (7-11) and (7-13). To do this, we substitute

the expressions for _ and A _ given in (7-27) into the definition of

given in (7-10) which yields

where

A (7-42)

Comparing (7-41)with (7-11), we see that _'(±) is the amount by

which (7-11) fails of being an exact equality. It is easy to estimate

the magnitude of _(_}. Let L be a length characterizing the size of

the system in which we are interested. Now we have already noted

_ _ _ which contains
that because _ (±) and _(±) are not functions of _,

all the fast space-time oscillation associated with the de Broglie
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phase, they are functions only of particle velocity and spin orien-

tation. Weshall limit ourselves to solutions in which no fast pre-

cession of the spin axis is present. For such cases it is always

true that appreciable changes in _±) and_c±) occur only over dis-

tances comparable with L and in times greater than L/_. Thus it is

true that, in such cases,

7CJ±) (7-43)

where the symbol_is to be read "is of the order of".

Substituting (7-41) into (7-9), we have

(7-44)

which is the exact version of (7-13).

We shall now estimate the importance of_(_)in (7-41) and (7-44).

In making these estimates we shall, to simplify the notation, drop

the (_) subscript with the understanding that the results apply

equally well to either charged fluid. First we note that, since

the effect of_ _ in (7-44) is (as we shall see) small, we have

I_ co°l _ _C. (7-45a)
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(7-45b)

where, for order of magnitude estimates, the contribution __A J to

_ has been neglected. (The magnitude of A J is, in any case, uncer-

tain because of the arbitrariness in the choice of gauge.) From

(7-43) and (7-45) we have

L
I ,I

(7-46a)

(7-46b

where

(7-47

is the Compton wavelength of the particle. Let 0(_) designate

"a function of the order of magnitude of the number n ". Using

(7-46), we can write (7-41) and (7-44) as follows:

"_t - 2.coo +o( (7-48a
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(7-48b)

-- 0"_ [I t (3( I_I-)] (7-49a)

= L Y3-a._ (7-49b)

where 0"-*_i is the sign of the particle charge.

To estimate (A/I-] and (_L)(c/_) we use_ _ lo-llc_,_ which is

11

appropriate for an electron; L. _ lO c_" which is the order of magni-

tude of the sun's radius; andl_'_lO_-cm/sec_ which is the order of

magnitude of the rotational velocity at the surface of the sun.

For these values we have

_ i0 -_9
u_ (7-50b)

which are very small indeed. We note that, in the neighborhood of

a stagnation point where #r=O, the contribution _A _ to p_, which

we neglected in (7-45), becomes important. In such a region we
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should replace/_-in (7-45) - (7-50) by _-_A i . This guarantees that

the ratio (7-46b) remains small, even when/V'= O, since in general

_0 at such points. (In fact, we can guarantee that this is the

case by an appropriate choice of gauge.)

The sole purpose of these estimates has been to demonstrate that,

at least for the type of problem in which we are interested, the
B

vector_that we introduced to replace - , which was difficult
t

to work with in calculations) is indeed very nearly equal to --_J_.

O

(7-48) also provides the quantitative justification for calling co

the de Broglie frequency and COthe de Broglie wave-vector. When

we recall that, according to (3-2), _ must be the gradient of a

scalar, we note from (7-48)^this is also very nearly the case for_

All of the relations presented in this section have followed

directly from the definitions that provide the link between the

spinors _ _ and the kinetic and dynamical properties described

by the particle tetrapod. It is evident that any spinor equation

of motion that determines the space-time behavior of _and_for

given electromagnetic, gravitational, and thermal fields will in-

directly specify the equations of motion of the fluid quantities

described by the tetrapod, in particular the equations of motion

of _ and _. If it should turn out that the equations so deter-

mined are just the systems (6-1) or (6-6), then the postulated

spinor e_uat_onlof motioh_for _and_is the desired spinor

alternative to Euler's equation.
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In the next section, we shall postulate a certain spinor equa-

tion of motion_ and then using the definitions of the present section

we shall derive the equations of motion satisfied by the quantities

described by the tetrapod. Weshall find that the resulting equa-

tions are identical to the system (6-6) supplementedby an equation

of motion for the particle spin_ which is interesting but, for the

purposes of magnetogasdynamics, not of primary importance° The

spin-dependent potential &_÷) in (6-6a) will be given as an e_plicit

function of _(_)_d _(±), and it will be shownthat, for macroscopic
l

problems, _i±) is completely negligible compared with the poten-

tials A _ that are encountered in such problems.

Section VIII will merely summarize results. The derivation of

these results is carried out in Appendix C. For a detailed under-

standing of Appendix C, some prior familiarity with spinor analysis

would be helpful, and for this the reader is referred _o references

(ii), (12), and (13).

As a necessary preliminary to discussing the spinor equation

of motion, we note that the 4-gradient operator _j can also be written

with spinor indices. Thus_ analogous to (7-21), we have
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which can also be written

J
(7-52)

_o

whose inverse is

(7-53)

The following operator identities are also of interest:

(7-54)

(_-55)

From (7-54) it follows that

= : __ (7-56)

In the next section we shall work with the irreducible covariant

form _ of the 4-vector potential where



105 Sec. VIl

where we have madeuse of the fact that it is the contravariant form

A_, rather than the covariant form Aj, that is regarded as the gener-

alization to four dimensions of the 3-vector _=(_g, AW, A_).

The following identity is useful for evaluating Fjk from A_:

(7-58)

o

- _,_'(_A_)_ F;" - _¢-_',

where we have used (4-3) and (4-5).
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VIII SPINOR EQUATIONS OF MOTION

Spinor Equations

We postulate that the spinor equations of motion have the

following form:

where

(8-1a)

(S-lb)

(S-lc)

We supplement these equations with the constraint (7-38):

which is equivalent to requiring that

(S-ld)

Cos E(_ = O- ) 0_= +i

where O'is the sign of the particle charge of the fluid under

consideration.

We note that the signs preceding _ in the above spinor equa-

tions are the sa_e for both charged fluids. The reason for this

is that the sign of the particle charge is treated as part of the

(S-le)
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solution of the spinor equations (the value of the phase 6), rather

than as a parameter in the equations.

The equations (8-1) are just the spinor form of the

Dirac eqUatiOn W_hZlthe generali_ation that the mass includes

(*)
contributions arising from the gravitational and thermal energy.

It should be emphasized, however, that, except for the incorpora-

tion of the de Broglie Hypothesis into the theory, which introduced

Planck's constant as a proportionality factor relating _(_ and _)

(cf. (7-8)), the theory developed in this paper is completely

classical in spirit. In particular, no quantization process has

been introduced.

It is really not surprising that a Dirac-type equation

should be the first candidate for investigation in a theory like

the one developed here, since this equation is the simplest first-

order linear equation that incorporates a scalar field (_(±))and

a vector field _A_A], and also guarantees that the observable

quantities of physical interest (_, _J,y_ _ J_, (±) do not contain

(*)See, for example, ref. 12, p. 1393, eq. I. This equation does

not include the factor_ appearing in (8-1a) and (8-1b) simply be-

cause of a difference in the definition of the matrices _J
_.
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oscillatory terms with frequency of the order of the de Broglie

frequency.

Derivation of the Euler System of Equations

Using the spinor equations of motion (8-1), and the definitions

of Section VII that relate the observable quantities described

by the tetr&pod for the fluid to the spinors _C±) and_(_, it is

shown in Appendix C that we can arrive at the fluid equations of

motion in terms of these observable quantities. In this section,

we shall merely exhibit these equations, and discuss their physical

The most important of these equations are thesignificance.

following:

where

- = (mcu_) ÷ +ac± (8-3)= ;J@(±) (_=_ --E-

- _ )c_

where _(+_) is defined by (7-42 ) and

(8-4)

(8-5)
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The _(_ that appears in (8-3) is defined as follows:

(8-6)

where

where

i I

" / _ (,+-)

¢' ,-

(8-7)

(8-8a)

(8-8b)

and the overhead "o" in (8-7) indicates the value of the 3-vector

in question as seen in the particle rest-frame. (Note that, in

general,_in the case of the proton gas is different from_in

the case ofthe_electron gas:because the two rest-frames are::different.)

Note that the definition for _(_)in (8-6) is implicit,

rather than explicit, because _(_) involves _ (_) itself (rather

than _(±)) in the denominator.

Comparing (8-7) with (6-1f), we make the following identification:
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wherever) is the magnitude of the magnetic dipole moment of the

particleo(8-9) is just the dipole moment that the Dirac theory

yields (g-factor equals 2), with the modification that the total

mass _(_, rather than the free-particle mass _(±), appears in the

denominator.

The equations (8-2) and (8-3), together with the automatic
m

normalization of the 4-velocity _±) that was demonstrated in

(7-40), constitute the system of equations given in (6-6). From

this system we can derive, as was shown in Section VI, the

Euler system of equations (6-1). Thus we have shown that a

solution of the system of spinor equations (8-1) automatically

yields, via the identities of Section VII, a solution of the

Euler system of equations (6-1).

Magnitude of Spin-Dependent Electromagnetic Field

Now we shall demonstrate that, for magnetogas-dynamical systems

on a laboratory or astronomical scale, the effects of the spin-

dependent field _ (±) are completely negligible. (Recall that _C±_

has its origin in the small contribution _ _±) to the fluid

momentum density that resulted from the presence of the spin
f

angular momentum density. Thus _CZ) is really a spin-dependent

mechanical effect, although it has been treated, for reasons of
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intuitive clarity, as a contribution to the electromagnetic

field.)

In Appendix C it is shownthat, for solutions of (8-1) that

yield functions for _, %_,/_ and o0_that change significantly

only over distances of the order h and in time intervals greater

than h_, we have

_ _8-101
where { is the fine-structure constant:

- _ I_7. e_ (8-11)

_o _s_r_z_st_ooom_ar_on_et_oo_I_I_ _o_u_os
IF_kl of the electromagnetic fields encountered in the sun and in

a system of laboratory dimensions. 0nly crude estimates for the

lower limits of IF_k Ihave been given, but these suffice to

indicate that in macroscopic systems the effects of @_
(+) are

completely negligible. The third line of Table I has been in-

cluded merely to demonstrate that, if one were to attempt to use

the spinor formulation of magnetogas dynamics to construct models

of nuclei or elementary particles, the effects of the spin-dependent

field _(_) would be not at all negligible.
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Table I

L(cm) I _kT(_)I (Gauss) I F_l(Gauss)

Sun I0_! I0 -_'9 > i

-7
Laboratory l I0 > 1

Nucleus i0 -13 I0 IA _n

Effect of Variable

The side condition (8-1d) is analogous to the 4-velocity

normalization condition (6-1c) in the Euler system of equations

in that both conditions introduce an algebraic nonlinearity into

the problem, since they are quadratic in the unknown functions.

We shall now demonstrate, however, that the spinor system of equa-

tions has the great advantage that, for problems on an astronomical

or laboratory scale, the nonlinear side condition (8-1d) may be

ignored.

In this regard, we already noted following (7-40) that dropRing

the constraint (8-1d) has not effect on the automatic normalization

of _(Z)" Moreover, in Appendix C it is shown that, if we ignore

this constraint, no change in the continuity equation (8-2) re-

sults, and the effect on (8-3) can be represented as a spurious

A_
mass contribution (A¢ _<_and a spurious 4-vector potential (Ag )(Z).

Under the same conditions used in estimating l@_z_l , we find
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where _ (_)is the Comptonwavelength introduced in (7-47). Thus,

for macroscopic systems, the effect of (_¢ _ )(t]is even smaller
J

than that of _(±), whereas, for systems of nuclear dimensions, this

is obviously no longer the case.

In order to estimate the effect of the spurious mass (_)(±),

we note that this may be regarded as arising from a spurious con-

tribution to the specific enthalpy, which in turn may be regarded

as arising from an error (A_T)(_)in the fluid temperature. In

Appendix C, it is shown that

where _ is the Boltzmann constant. In Table II IAeT(.)I (i.e.. the

error in the electron temperature) is compared with the range of

temperatures encountered in the sun, laboratory, and in nuclear

systems. (The case for protons leads to even smaller estimates.)

Table III

L(cm) I_ET¢-_I (°K) T(OK)

Sun 1011 i0 - 33 i0 _ -i0 _

Lab i I0 - l_ 0-i0 _

-13 I,S" I_
Nucleus i0 i0 0-i0

Obviously, the effect of _a_-(_) is completely negligible in the

first two cases, and not at all negligible in the last case.
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Finally, it is shown in Appendix C that

U --U--

Thus, neglecting the side condition (8-1d) in the case of macro-

scopic systems will not produce a change in the sign of co_ E(N,

which we interpret as the sign of the electric charge of the

particle. Another way of interpreting (8-14) is to say that, for

macroscopic systems, the equations (8-1a) and (8-1b) come very close

to satisfying the condition (8-1d) automatically, without anything

being done to bring this about.

In summation, we conclude that, in the case of macroscopic

magnetogas-dynamical systems, ignoring the side condition (8-1d)

will introduce no significant error into the solution.

(8-14)

Stress-Energy Tensor

In Appendix C it is shown that the following equation results

from the spinor equations (8-1):

where

and '-_(_is the 4-force density acting on the fluid,

(8-15)

(8-16)
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We see in (8-15) that it makes no difference whether we con-
I

tract _ with-_(i_ or -_Q_. This is a non-trivial result, inas-

much as the tensor T(_ is not symmetric.

Equation (8-15) justifies our regarding _(_ as the stress-

energy tensor of the fluid. Comparing (8-16) with (6-11), we see
B

_k

that t(_ , the spin-dependent part of the stress-energy tensor,

has the following form:

Angular Momentum

In Appendix C it is shown that the following equation results

from the system of spinor equations (8-1):

where

Comparing (8-19) with (6-27) and (6-30), we make the following

identifications:

(8-1v)

(s-is)

(s-19)

(8-2o)
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and

(±)
(s-21)

Thus _((_(_)is the spin angular momentun density and, since (_0)(.)

is the
is the particle density in the observer's frame, _ Q+)

spin angular momentum of a single particle in the observer's frame.

In this regard, it is interesting to note that it follows

directly from the iLmr_ntz transformation that

@

 =Fl, + (8-22a)

where

@

°
->

@

is the component of/_ parallel to#, and
O

Q _

is the component of_ perpendicular to_Z. Thus

(8-22b)

(8-22c)

(s-23)

which corresponds to the well-known property of particle spin to

align itself parallel or antiparallel (depending on the sign of

in (8-22b)) to the particle velocity at high speeds.
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Finally, it is shown in Appendix C that in the fluid rest-

frame the following equation is valid:

X IS + _ (s-24)

This equation describes the precession in its own rest-

frame ofa particle having a spin angular momentun(_l(m)and a

momentf _"_ _ )_+_.)cmagnetic _ --_a/_ orresponding to a gyromagnetic ratio

(._)(_)which in turn corresponds to a g-factor of 2 (referred,

of course, to the total particle mass Mc±)rather than the free

particle mass _¢±I)" The precession produced by 6(+_) can be regarded

as the result of a self-interaction of the electron or proton

fluid with itself. In any case, Table I shows us that I _C_)I _ I_'pl

for macroscopic systems.

Dimensionless Form of Equations

Let us refer the particle masses to the electron mass

where

/

Thus, if mO) and _(÷) are the electron and proton masses respectively,

we have

_ c-) = 1 i8-26a)
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/ _ (+)
-J_3&.l (S-26b)

where the dimensionless masses have been indicated by an overhead"

stroke. We shall refer all lengths to the Compton wavelength of

the electron _ where

= _e C - 3._,Z.XIo c_
(8-27)

Thus we have the following relations between the dimensional and

dimensionless (indicated by a stroke) quantities of principal

interest:

(8-28a)

j" _ -ll /a'
(S-28b)

-/
(8-28c)

[] = '_e_ Z" F'I : 6.707 X I O_ _ [] c _ (8-28d)

(8-2Se)

j -I " _ to/ j -_
CO(±)= _e _°C±)= Z.5_lox/a cue+_; c__ (s-zsf)

ec±)= /_e Cc_) = I.75 7_.× _o 8c.,.) c._ (8,28g)

(8-28h)

: × E.2
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J
-= I_._-39 A J st_tvolt (8-28i)

(8-28j)

(8-281)

(8-28m)

Two dimensionless coupling constants will be needed: the

fine-structure constant _4,

and the dimensionless gravitational constantS,

(8-29)

- p(__) a. _÷sP = = 2,..3_ _' x Io (8-3o)

The dimensionless spinor equau_ons (8-1) have the form

(8-31a)

/ /

where --_¢(-)and --3(+)are dimensionless real scalar functions of the

space-time coordinates that determine the gauges of the 4-vector

potential that one chooses to use in the solution of the spinor
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equations for the electron and proton gases. There is no need

that the same gauge be used in the two cases. These scalar func-

tions, which did not appear in (8-1), have been inserted in

(8-31) simply to make the arbitrariness of the gauge more explicit.

The algebraically nonlinear condition (8-1d) has not been

included in (8-31) because we saw that ignoring it introduced no

significant error into the solutions of macroscopic problems.

The field equations (6-8) in dlmensi6nless form are as

follows:

: J

(8-32a)

(8-32d)

where from (7-28) and (7-35)

(8-32e)

and from (7-20)

(8-32f)
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or, using (7-28)

where the vertical bars in (8-32e) indicate the modulus of the

invariant _ (_)which, if (8-1d) is not satisfied, will be

complex (although the imaginary part will be extremely small for

macroscopic problems).

Note that we have written the electromagnetic field equation

(8-32c) in terms of the irreducible form _of the 4-potential

instead of the usual form _J because it is Ay_ that appears in the

spinor equations (8-31).

In (8-32a) and (8-32b) both the differential and integrated

forms of the "thermal field equation" have been given. For problems

involving harmonic expansions, the differential form (8-32a) would

probably be more convenient, but for the purposes of the present

discussion we shall refer to the integrated form (8-32b).

It will be noted from (8-32) that the source terms of all

the field equations are algebraically nonlinear expressions of

(8-32g)
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the spinor components; but, given the functional dependence of the

spinor components on the space-time coordinates, it is a simple

matter to determine the source terms and thensolve the field

equations. (Working with (8-32b), one would use the binomial

theorem to generate a series involving the ratio of the higher

harmonics in _ to the lowest harmonic, and then terminate the series

after enough terms to provide sufficient accuracy.) The fields

found by this procedure could then be substituted into the

spinor equations (8-31) in order to calculate spinor functions

more accurate than those used to calculate the fields. The solution

of the equations (8-31) for given_,_, and _ is no problem

since the equations are linear. This procedure is the basis for

a straight-forward iteration solution of the complete magnetogas-

dynamical problem. The equations (8-31) have been cast into a

form in which all the :i_tera_tion terms are contained in the square

brackets preceded by the coupling constant _=_ The smallness

of this constant encourages the hope that the convergence of the

solution would be rapid.
I

It has been noted that the gauge function _c_)is completely

arbitrary, and its presence in the spinor equations is a great

asset since it can be chosen partially to cancel out unwanted

/ I

higher harmonics in _ and _(+_which necessarily arise because the
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source terms of the field equations are algebraically nonlinear

functions of the spinor components. To a lesser degree the
I t

constants H(÷_ and Ht_)may also be adjusted to minimize the

effects of higher harmonics, but we must recall that the choice of

these two constants is restricted by the constraint (6-9) which

in dimensionless form reads

J / J f

_(_) H(_) _ _(+) H(+)

How close this relation must come to being an exact equality

depends on the magnitude of the difference between and ,

and how great a difference between the temperatures of the electron

and proton gas@s one is willing to regard as physically admissible.

It has already been noted that there is no need that _(+)

and _e) be equal. Moreover, we are free to choose different _(±)

and H(_at each different stage of the iteration. It may even
/

be possible in certain time-independent problems to choose _(±)

I

and H(±) in such a way as to allow a separation of the angular

and radial dependence of the equations. In such a case an itera-

tion procedure would be unnecessary since the system of partial

differential equations would reduce to a nonlinear system of

ordinary differential equations which could be solved by numerical

me ans.

(8-33)
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• I

In order to make the significane_o_)._?_. ..clearer, it has

been shown in Appendix C that introducing a gauge transformation

f

characterized by the real scalar function _(±) is equivalent to

multiplying _(±) by and 2((_+)by - .
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APPENDIX A: ENERGY INJECTION AND VISCOSITY

Energy Injection

In Section II we saw that the possibility existed of taking

energy injection into account by choosing an appropriate func-

tional form for Q(+). Let us postulate the following form for _(+):

J A-l)

where A(±) is a scalar function of the fluid coordinates whose

physical significance is discussed below. Substituting (A-l)

into (2-22), we find that Euler's equation in the fluid rest-frame

has the following form:

Thus the choice (A-I) produces no new 3-force in the fluid rest-

frame, but it does produce a new term _(A_¢_)in (A-2a). This

corresponds to an energy injection into the fluid in which A

represents the fraction of the particle rest-energy that is in-

jected per particle per unit time. Obviously A has the units of

inverse time.
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In general, " '--[A_JC+):_ "" _(,A_ j(_). The reason for this is

that the nuclear reactions give the injected energy to the protons

rather than to the electrons, and it is only through collisions

that the electrons receive their share of the energy. If, how-

ever, we assume that energy equip_rtition establishes itself

instantaneously (i.e. ,i:in_a time very short compared withl the time

for the fluid to move a significant distance), then

_A_)(+) : _A _)(_) (instantaneous equipartition)_A-3)

Although energy injection introduces no new 3-force in the

fluid rest-frame, we note from (2-22b) and (A-I) that in the

)( )observer's reference frame a 3-force (_Z{ ° A_ appears, where A_-

is just the momentum per particle that is injected along with the

energy. (If the particle energy, hence its mass, were increased

without the supplementary force Am_, then; by Newton's Second Law,

the particle would necessarily slow down.)

Obviously, (A-I) applies to the case of energy loss (through

radiation), as well as to energy injection. It is only necessary

to make _ negative instead of positive. For negativeA, the force

A_ represents a drag on the particle. This is the radiation drag

that occurs when a charged particle loses energy by radiation.
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As was emphasized in Section II, the use of (A-I) instead of

the adiabatic condition (2-30) makes no difference in the form

of Euler's equation written in the form (2-24). It does, however,

change the "thermal field equation". From (2-15) and (A-I) we

see that, instead of (_->_j, we have

=C)

Viscosity

For the sake of illustration, a rough and simple way will be

given to take into account the viscous interaction between the

two cha_ged fluids. Let

where _ is a suitably chosen invariant function of the fluid

variables which has the dimensions of a force.

_ow we note that for the proton gas, for example, the term

(_@°)_÷)on the right side of (2-22a), which represents the rate

of energy injection per unit volume) has the following form:

The quantity in the brackets is the total change density which,

because of the electrostatic screening effect, must be everywhere

(A-4)

(A-6)

(A-S)



App. A 128

very close to zero.

to zero. The energy injection for the electron gas is just the

negative of (A-6). Thus the energy gained by one field is lost

by the other, and the total energy generated is zero.

We note that the force term (_ _)_n the right side of

(2-22b), which represents the viscous force on the proton gas,

has the form

Thus, the energy injection is also very close

The second term in the brackets represents a dragging force that

acts to slow the proton gas down. The first term is a force

which tends to accelerate the proton gas in the direction in

which the electron gas is moving. These are just the effects

we would expect viscosity to produce. The viscous force acting

on the electron gas is just the negative of the viscous force

acting on the proton gas. If, for any reason, we wished to free

ourselves of this constraint, we could do so very easily by

]
modifying (A-5) so that _÷_ and _j involved different invariant

functions _÷) and F¢_) . In this case, the total energy injected

into both fields at each point in space by means of the viscous

forces is not in general zero.

(A-7)
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From (2-15), we see that when _(±) is given by (A-5) the

"thermal field equation" has the following form:

t •

-- (A-S)

The approximation based on (A-5) does not take into account

the self-interaction of either fluid with itself that results

because of viscosity. To do this we would have to introduce

derivatives of the velocities into (A-5). In particular, we would

introduce a term involving a suitable covariant generalization of the

expression (_'._)i_(_l.
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APPENDIX B: EXPLICIT EXPRESSIONS FOR THE PARTICLE SPINORS

We saw in Section VII that the particle tetrapod has seven

degrees of freedom, one of which, the particle density_, drops

out if we work with a tetrapod normalized to unity. The remaining

six degrees of freedom are to be identified with the three com-

ponents of the particle velocity, and the three Euler angles

needed to specify the orientation of the particle tripod in the

rest-frame of the particle.

Rather than use the three Cartesian components of the particle

velocity, we sha_ll, use _=_r/c and the two spherical angles $

A

and q0 that specify the direction of the particle velocity in

A

the observer's reference frame. (The caret over @ and @ merely

indicates that these angles refer to the velocity, and distinguishes

them from the angles @,_ which will be used to specify the

orientation of the particle tripod.) Thus we write the particle

4-velocity as follows:
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(There will be no need in this appendix for (_ and (-) subscripts

since it is understood that everything applies equally well to

either of the two charged fluids.)

In order to specify the angular orientation of the particle

tripod, we imagine that the observer accelerates himself and his

coordinate system in the direction of the particle velocity until

his velocity is the same as that of the particle, i.e., until he

is in the particle rest-frame. This is accomplished without

rotating his coordinate system. The orientation of the tripod_ -_,
O O

A, antis then easily specified in terms of the Euler angles _,

_, and_ that would carry the observer's ownS, _, and _ axes

over into the positions occupied by the _ ,A , and vectors

respectively. Thus, we first rotate the observer's tripod of

coordinates axes a_ angle _ about his z axis, then an angle

about his y axis, and finally an angle _ about the direction in

which the observer's z axis finds itself after the first two

rotations have been carried out. The observer's tripod, like

°°the tripod (_,A , ) is assumed to constitute a right-handed

system, and the positive directions for the rotations are given

by the right-hand screw rule. Note that_ specifies the rotation

about the y axis, rather than the x axi_____s,as is frequently the

case. The reason for this choice is that is makes the angular
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O

dependence ofF similar to that of (_' I.(,._3 ) in (B-l)) )

we have

Thus

O I. ' A_

o.I

(B-2a)

I -- Co5 _ ca'_¢9 r__S W _ S_n q_ SL_ Lp

_ = c_s@ slv_ cos4_ _ cos(o s_v_ (B-2b)

(B-2c)

The expressions (B-2) are valid in the particle rest-frame.

It is now a straight-forward matter to transform these three

vectors to the observer's original frame of reference. Let NT,

be the velocity unit 3-vector, i.e.

"_ ' ' COS @)
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Then from the Lorentz transformation we have

O

(B-4a)

(B-4b)

where

-_ ' _-'" c_ _I,/_,-_ = _ s,_ cos - (B-4c)

O

0

(B-5a)

(B-Sb)

where

+ si_._" cose co_( - cos (B-5c)

,e=
@ @

_-- (,_',.__-,._')= _'+ c_'_OCt.*_),_,-"

(B-6a)

(B-6b)

where

(B-6c)
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By meansof (B-l) - (B-6), all sixteen componentsof the

tetr&pod (normalized to unity) have been specified as functions

of_ ,_,_,_,_, andS. Wemust now find expressions for the

componentsof _ and_ _ in terms of these variables (plus _ and

) such that the relations (7-27) are satisfied. It can be verified

by direct calculation that the following are the desired expressions:

s

%*

(B-7a)

(S-7"b)

where

(B-8a)

(B-Sb)

(B-So)

(S-Sd)
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where

-I
(B-8e)

and

A

Let us now find expressions for the variables _, 6 ,_ ,_,

_,e,qO, and _ in terms of the spinors _and From (7-35)

we have

(B-Sf)

(B-9)

and

(B-IO)

In order to find expressions for the other variables_ it is

convenient to introduce the functions A and _ defined as follows:

f' Z _

A-fk-
5= _ X _..._..._....------

(B-lla)

(B-11b)
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From (B-If) it follows that

Cos e=
AA-BB

C' :=

In order to findA, (9, and _, it is most convenient to use the

following relations2which result from (7-26), (7-25), and (7-22):

,_t liHaving found from (B-15a) and (B-9), we use the following

relation to find :

From (B-15b) - (B-15d) we have

C@ =_

(_-_2)

(B-13)

(B-14)

(s-15a)

(B-IS_)

(B-15c)

(B-15d)

(B-_7)

(B-18)

(_-19)
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In the solution of a magnetogas-dynamical problem of the self-

excited dynamo type, we would solve the spinor equations (8-1)

or (8-31) and arrive at expressions for_ _ and_ _ as functions

of time t and the spherical coordinates r, _, and _. We would

then use the above expressions to find _,_, C@, QO, and

as functions of the coordinates (t, r ,_r, _).
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APPENDIX C: DIFFERENTIAL SPINOR RELATIONS

Observable Quantities

Using the spinors _ _ _and _ , and the gradient operator

(or _j ) as the basic ingredients, it is possible to construct

many differential expressions. Before any physical meaning can

be given to these expressions, however, it is necessary to translate

them into expressions involving the observable quantities _, E,

• j, _J ,x_/"k
_J,/_ , and which are defined as follows:

F ,

. .. :. (C--l)

_/3 + Z (C-2)

_5 L C-4a)

where

Using (C-4b) and (C-4c) in (C-4a),_ i can also be written as

follows:

C-4b)

C-4c)
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or

r

The dual tensors/_J k and_ J_ are defined as follows:

- =

(C-Sa)

(c-sb)

(c-6)

(c-7)

The following orthogonality properties result from (C-6):

Jk ik (C-8a)_tl, = _jA, =o

,,,@._._, - o (C-Sb)

It can be shown that and_ JKare related to the spinors _ _

and _ as follows:

(c-e)

(C-lO)

Thus we see that the symmetric spinor expression (_%+_/_) is

to be assocated with the dual tensors _JK and _D_k. The antisymmetric



App. C 140

spinor expression (_ _t_ -- _ _-ftg) 0orresponds to the

Kronecker delta function gjxas shownby the following identity:

In this appendix we shall have no need to label quantities

with the (+) and (-) subscripts. Whenthe sign of the particle

charge enters an equation it will be indicated by o-, where _-=+-i.

(C-ll)

Gradients of Spinors

Using the definitions (C-I) to (C-5) it can be verified that

following expressions for the gradients of_ _ and_ & are validthe

identities:

These identities can be written in a more symmetric form, as follows:
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k

If we multiply these two identities by _, contracting the k

the_B, we arrive at the following identities:

(C-13b)

and

(C-14a)

• ' _ '_ __)-I

_ and _,6_ _ could be found by
Alternative expressions for

contracting (C-12) instead of (C-13).

Using (C-12) - (C-14), it is possible to derive the follow-

ing identities :

(C-14b)

Scalar Identities

l

:_ $_ - ;_$_Z _

f__ Z_+ _Z _

- , \._)- -_ (C-l_)

! x

-_ _k_'_'e__"_-_- (C-l_)
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Vector Identities

(C _c_

_ (_,_ + __ -

- _ {_

Tensor Identities

(c-_9)
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where

(c-2o)

(c-21)

(C-22)

k--_,_ ]- (C-23)

(C-24)

Spinor Equations

The relations (C-15) - (C-24) are just identities based on

the definitions (C-I) - (C-10). By introducing spinor equations

of motion, and substituting these into the above identities, we

can find the fluid equations of _otion in terms of the observable
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quantities defined in (C-I) - (C-!O). The spinor equations of

motion are postulated to have the following form:

& %_uZ_= _,_ _ ÷ _- A_X _

(c-25a)

where

_- _', (i + ?/_'- + "_Ic.') (C-25c

We shall at times impose the following constraint on the solutions

of (c-25) :

J.(g z = o (C-26a

which is equivalent to the constraint

c_ g = c- = +_i (C-26b

or

E= Tr _:r cr =-i

(C-26e

where 6 is the phase angle common to_ A- and_ _and c-is the sign

of the particle charge. The symbol o- will always represent either
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+I or -i, but in muchof what follows we shall not impose

condition (C-26), with the result that in such cases cQ_ G_o-.

Whencondition (C-26) is imposed, however, we note that the product

_s¢, which occurs in someof the following expressions, equals +i.

Fluid Equations of Motion

We shall first derive the fluid equations of motion without

imposing the constraint (C-26). In this way it will be possible

to estimate the error introduced by neglecting this constraint.

Substituting (C-25) into (C-15) and (C-16), we have from

the real parts of these identities the following relations:

sin

where

and

!

(C-27a)

(c-2,s)

These equations hold for each of the two charged fluids

individually. (C-28) is just the statement of charge conservation,

or conservation of the number of particles, for each of the two

fluids taken individually.
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Equation (C-27) allows us to estimate the magnitude of E for

the case that we solve (C-25) without imposing the constraint

(C-26). Wenote that, if we limit ourselves to solutions in
J

which _ and/_ are smoothly varying functions whose values

change significantly only over distances comparable wiLh L and

in time intervals greater than_/c, where _ is a length that

specifies the dimensions of the system, then from (C-27) we have

L
where in the last step we have replaced _ by_ (defined in (7-47)

in terms of the free, rather than the bound, particle mass)

because the gravitational and thermal energy of a particle is

small compared with its rest energy. From (C-29) we see that 15_ e l

is very small for macroscopic syste_. Thus, for such systems,

we have

L

L.

(c-30)

where the first case applies to positively charged particles,

and the second case to negatively charged particles.

If we impose the condition (C-26), we have, instead of (C-27)
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Substituting (C-25) into (C-18), we arrive at two real

vector equations, one of which is the following:

= _. -_--£a:, _ke + £(,,-_.I...__._AJ(c-32)

In order to gain an intuitive feeling for this equation, let us

examine first the second term on the right side. Using (C-6),

we can derive the following identity:

(c-33a)

where

and

We note that, because of (C-8a) and the antisymmetry of

:' TI-'__j -- o

Let us evaluate_#in the particle rest-frame:

A2"--- {) --'' _'--_/u".-

(c-_3b)

(C-33c)

(c-34)

(c-_5)
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If we interpret -_-_pas the particle spin angular momentum density,

then the first term on the right side of (C-35) is just the contri-

bution to the linear momentum density arising from the spin angular

momentum density. This linear momentum density is completely

analogous to the equivalent current density in a magnetized body

that is given by the curl of the magnetization.

In order to understand the second term on the right side of

(C-35), we first note that a body whose 3-velocity is Ar and whose

mass and angular momentum in its rest-frame are respectively

and _# experiences a displacement _ of its center-of-mass

given by the well-known relation: (*)

-_ _-X(

= me" (C-36)

Thus (C-35) may be written

The second term on the right side of (C-P7) is the momentum

density that results from the change with time of the mass moment

of a particle.

(*)See, for example, ref. _0, p. 172, eq. 48. (The difference

in sign between this equation and (C-36) results merely from

a difference in sign in the definition of velocity.)

(c-37)
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Sznce_, which is defined in (C-33b), is an invariant, its

value in the particle rest-frame equals its value in all frames.

Thus

(c-3s)

where we have made use of (5-2b). Using (C-36) in (C-38), we

have

/v-= 0

Thus _ is just the contribution to the mass density that results

from the center-of-mass displacement given by (C-36).

Thus, when we impose the constraint (C-26), the vector equation

(C-32) can be written in the particle rest-frame as follows:

#a_ ¢o_C= _ (C-40a)

O

(C-4Ob)
- ( --¢- e,_ + ---- ]_.=o + A

8_" - c_

This shows us that _is just the rigorously correct expression

for the_-v_ffo_ cam_1_' momentum density including all the spin

effects. Since the spin-dependent contribution to the right side
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of (C-40a) is very small comparedwith _c, the right side of

(C-40a) is always positive. Becauseof the presence of the factor _-
O

on the left, we have the result that the sign of _ depends on

the sign of the particle charge. This is exactly what we concluded

from (7-14), which resulted from identifying the direction of
O O @

rotation of and _ about_ with the sign of the particle

charge. Thus we see that identifying co_ e with a', the sign of

the particle charge, as we did in (C-26b), has as a consequence

the fact that, for solutions of the spinor equations (C-25),

the direction of rotation of _ and about (all derived from

the spinors by means of (7-27)) is dependent on the sign of the

particle charge. This proves the consistency of the two ways of

identifying the sign of particle charge - either as cos 6, or

as the direction of rotation of abou .

We can derive the equation of motion (6-6a) by substituting

(C-32) into (7-44). Doir4g this, we have

4 a5

where

= + (C-41b)
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is to be regarded as the total mass per particle and

where

(c-41c)

_rrj •is the fine-structure constant and and "1f'_ are defined in

(C-33c) and (7-42) respectively. &_ is to be regarded as an

effective electromagnetic potential to be associated with the

magnetic moment of the particle. It is to be noted that, whereas

A _ is the same in the dynamical equations for each of the two

charged fluids, _J" in (C-41a) represents the two different

potentials _(+) and __) .

We have already seen in Section !II that (C-41) suffices

to yield a complete dynamical description of each charged fluid

for the case of given thermal, gravitational, and electromagnetic

fields.

Equation (C-39) g_ve_what might be called a kinetic _a_a-

tion of the mass increment _, based as it _s on the center-of-mass

displacement produced by the motion of the particle. We shall

now derive an electromagnetic explanation. First, we arrive at an

(C-41d)
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expression for (_J'tAk--_) by taking the curl of (C-41a):

e •

" = # (C-42a)

where

(C-42b )

Now we note that (C-33b) can be rewritten as follows:

J

where we have made use of (C-8a) and the antisymmetry of _)Jk.

Substituting (C-42) into (C-43), we have

(C-44)

where, in the second step, we have used (C-6). Evaluating the

invariant _c L in the particle rest-frame, we have

i_ =-- ._- (c-45)

where we have used (2-20) and (5-6). Thus _ is the mass corresponding

to the interaction energy of a magnetic dipole _ T in a magnetic

_) _a_i_ _-_ _ ratio isfield ( We note that theagyromagnetic• ,l,_l_ ,

which is the same value we obtain from the Dirac Theory, except

that in our case the particle mass _ includes the thermal,
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gravitational, and dipole-interaction energy contributions to the

mass, as well as the rest mass.

Magnitude of Spin-Dependent Electromagnetic Field
r

Now let us estimate the magnitudes of _-j and fJk. If we

regard the magnitudes of _J,/_J, and,,_ _k as being of order unity,

and consider only solutions for which these quantities, as well

as_, change significantly only over a distance of order L and

in times intervals greater than L/c , then from (C-33c) we have

I (c-46)

Thus from (7-43), (C-46), and (C-41c), we have

and from (C-42b), it follows that

(c-47)

(c-4s)

Gauge Transformations

Now let us study the effect of a gauge transformation on

equation (C-41a). Let _and A j differ only by the gauge trans-

formation generated by the scalar function_, i.e.

(c-49)
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Substituting this into (C-41a), we have

b

+ (c-5o)

Thus we see that a gauge transformation is equivalent to adding

a scalar function to the de Broglie phase function_ (or Hamilton's

Characteristic Function).

If F_and _ are the solutions to the spinor equations (C-25)

in which _ is used to describe the electromagnetic field, whereas

_and _ are the solutions resulting when the field is described

by A J, then we find from (C-50), (7-8), and (7-33), or by direct

substitution of (C-49) into (C-25), that

(C-51a)

(C-51b)

where

is the dimensionless form of _, and_is the fine-structure

constant introduced in (C-41d). Thus we see that a gauge

transformation is equivalent to a phase change of the spinors.
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From (C-50) it is evident that it is always possible to choose

so that _ has the form

Using (7-8), (7-33), and (C-52), we see that, for such a choice

of gauge, _ and_ maybe written as follows:

The significance of this way of writing the spinors is that it

shows that they can always be written in a form such that the fast

time dependenceis completely contained in a phase factor whose

time dependenceis given by the de Broglie frequency but which

has no spatial dependence. For a magnetogas-dynamical system in

which all the observable quantities are time-independent, the

square brackets in (C-53) are completely time independent. In

such a case_ and_ _ are irreducible representations of the

symmetry operation consisting of a displacement of the origin of

the observer's time axis. Thus it would seemthat the choice of

gauge that corresponds to (C-52), and hence to (C-53), has a

fundamental significance that other choices, such as the

Lor_t_zy Gauge, do not enjoy.

(c-_2)

(c-53a)

(c-53b)
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Error Caused by Variable

The relations (C-41) assumes that the constraint (C-26) is
a_

satisfied. In order to estimate the effect of neglecting this

constraint, we substitute (C-32) for arbitrary_ into (7-44)

and obtain

,<_ ~7 J'

(c-54)

Thus the effect of not holding 6 constant is to introduce an error

A&M into the mass and an error AG#" into the 4-potential, where

(C-55

(C-56

Using (C-30), we have

(C-57

(c-5s)

(c-59)
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For the purposes of an estimate, we may replace _ in (C-55)

with_. Thus from (C-55), (C-57), and (C-58), we have

(C-60)

Using (C-47), we can write (C-59) as follows:

i t

(C-6l)

which shows immediately that, for all macroscopic dynamical

systems,ACA _ is a fprtior _ negligible if _ is negligible.

In order to gain an intuitive feeling for the significance

of (C-60), let us regard _mas being caused by an error _in

the specific enthalpy. Since the effective mass associated with £

is _1(_/a_), we have

I A,'LI"-, c_(_/L) _

Using (2-2b) and (2-9), _¢£ean in _urn be expressed as an

equivalent error AGTin the temperature:

(C-62)

,'_lQ'i_e"l'_" _ for protons
L _

_. I_ c _,- :_'. for electrons
,

(c-63)
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which shows immediately that, for systems on a macroscopic scale,

AGT (and henceA_) is completely negligible.

Precession of Particle Spin

Substituting the spinor equations of motion (C-25)

complex identity (C-18) yields two real vector equations.

of these is (C-32). The other is

' k [(' j Jk_. _

where we have made use of (C-27) and (C-28).

As a preliminary to explaining the physical significance of

(C-64), we first introduce the 4-vectorJ_Jdefined as follows:

The physical significance of_ becomes clear when we consider

its value in the fluid rest-frame:

o 0

Thus Mis just the four-dimensionalgeneralization of the local

angular velocity associated with the fluid vorticity.

The following identity follows from the definition of J_J:

(c-64)

(0-66)

(c-67)

into the

One

(0-65)
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Thus

(c-6_)

and (C-64) becomes

_._ k 'KJZ_
a."r "-- _f _E''_

I

_(_ao-__)- _ _'--_ d'r
(c-69)

In the fluid rest-frame we have

@

(F,Sl- , & " ,=L'l'%,r.,o

° X,A_,,,.•" --:2-, --_ =o

(C-TOa)

(C-70b)

Equation (C-70a) is just an identity. This is _ost easily

seen by noting that the last term on the right side of (C-69)

can be transformed as follows:

(c-7_)

Making this transformation in (C-69), (C-70a) becomes the identity

t

0! e

o
(C-72)

As a preliminary to interpreting (C-70b), we substitute (C-42)

into (C-65@ and obtain

# I

_Mc - 'k '
((:-73)
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In the fluid rest-frame this becomes

O O 0

O o

_Mc

which is just the Larmor Condition we met in (2-44). Th_s

(C-73) is the relativistic statement of the Larmor Condition.

If we substitute (C-74) into (C-70b), we obtain

(c-74)

Neglecting for the moment the second term on the right, which

vanishes when we impose the constraint (C-26), we see that this

equation describes the precession in its own rest-frame of a

particle having spin angular moment_ _-?_ana a magnetic dipole

moment _ -_ -_ _'
_/_in a magnetic field(_rD_. These values correspond

to the gyromagnetic ratio
_

The second term on the right corresponds to an additional

precession whose angular velocity is--cq£. With the same basic

assumptions used in making previous estimates, we find

o

In the case of a system of laboratory dimensions, we can take

L_ cm and I_I _ gauss. We have already seen that for such a

(0-76).
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0

o ocaset_l_ IgL _d so c_beneglectedThuswefindthat

the ratio (C-76) of the precession velocities is of order i0 -7. For

larger L orf, the ratio would be even smaller. Thus, for

macroscopic systems, the spurious precession resulting from not

holding@ constant (i.e. not imposing the constraint (C-26))

is completely negligible compared with the real precession given

by the first term on the right side of (C-75).

Finally we note that, substituting the spinor equations

(C-25) into (C-19), we obtain from the _imaginary antisymmetric

part of this equation

(c-77)

where we have made use of (C-28) and (C-32). (C-77) is equivalent

to (C-64), except that the spin has been represented by the tensor

Jk j
instead of the vector/_. The 3-vector equation obtained by

writing thespace-like comPonents of (C-77) in the particle rest-

frame is just (C-70b), which has already been discussed.

Stress-Energy Tensor

Substituting the spinor equations of motion (C-25) into (C-21),

the imaginary Part of the resulting equation yields
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where _k is defined in (C-23). As a preliminary to explaining

this relation, let us define a 4-vector _ as follows:

G

Since _ahas been interpreted as the total (or canonical)

particle momentum, including spin effects and the contribution

electromagnetic field,_is just the inertial

E

of the external

part of the particle momentum, including spin effects. From

(C-32) we have

J=( sO-Co5 _ m_c2a -- x.--_-- _ "¢' ")kE

L,-- t'_)

(c-so)

Using (C-33), this can also be written

1',o.. R'im_',;l_t ,i,,ug_define ,_he ,tensor, T..':: _ go.'1lows :

(c-sz)

From (C-82), (C-21), and (C-23) we have

.,,..= - 1.L%(e%a+ __:*) ,4

which expresses _-aK directly in terms of the spinors _ andS'%

(c-s2)

(c-83)
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Substituting (C-82) into (C-78) and using (C-28), we have

I

For the case in which condition (C-26) is satisfied, (C-84)

becomes

I

_r _o$ G =0"

(0-84)

(0-85)

where_k is the force density defined in (6-16).

We note that (C-85) is identical with (6-15) except that

the contraction on the left side of (C-85) involves the first

index, instead of the second as in (6-15). We shall now show

that _T_ =_I (which is not obvious, sinceTj'k is not

symmetric).

Substituting the spinor equations of motion into the identity

(C-19), we have from the real antisymmetric part of the resulting

equation the following relation:

- = _--7- _ A_ (0-86)

Contracting this with _k and using (0-82), we arrive at the

following:
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Because the divergence of the right side vanishes, we have the

desired result :

i

(c-ss)

Thus (C-85) is identical with (6-15), and we are justified in

interpreting-Fj' k as the stress-energy tensor for the fluid.

Substituting (C-80) into (C-82), we have for the case cos _ =

T_k ,_,c_. 14,1 k
-- _' l,'vl 1.4 _. _(

(C-89

Comparing with (6-11), we have

_r CoS _ = _ (C-90

where t_ is the spin-dependent part of T_[

As discussed in Section V, the fluid energy density is

J
given, byT°°; the fluid energy flux density_#(designated by

<_ in Section V) is given by c'] -_, and the fluid momentum
i ,

density_ (designated by_i _ in Section V) is given by _q-o[

It can be shown that in the fluid rest-frame these quantities

assume the following form:

_or C_S _ =o- (C-91
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= CL

where_is defined in (C-36). These expressions make the role

(C-92)

(c-93)

of particle spin intuitively evident. The first term on the right

side of (C-92) is the energy flux arising from the change in

displacement of the center-of-mass of an accelerating particle

having spin. _ is just the corresponding momentum density.

The second term on the right side of (C-92) is the energy flux

associated with the linear momentum density arising from the spin

angular momentum. If this term (divided by C_) were to appear

in_as well, it would, when we came to calculate the angular
r,

momentum density <X_ associated with7 -_k, give rise to an

smgular momentum contribution that had its origin in the particle

A"

spin. The fact that this term does not appear in_£is

consistent with the fact that we treat the spin angular momentum

der_ityas_ a separate contribution that is not included in r K .

Angular Momentum

From (C-85) and (C-88), we obtain the following:

(c-94)
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Substituting this into (C-87), we have

_ _-(_ -

where

M_ =2 j_ + _ -_ V )

(c-95a)

C-95b

and

C-95c

As shown in Section V, (C-95a) and (C-95b) constitute

ferential form of the statement of conservation of angular

momentum, whose integral form is

where from (C-95c) we have

the dif-

(0-96a

(C-96b

The integrand on the left in (C-96a) is the total angular momentum

density, and the integrand on the right is the torque density.

Since_ is the spin angular momentum density, and (_) is the

particle density in the observer's reference frame, we see from

(c-96b) that _ _o is to be interpreted as the spin angular

momentum of a single particle as seen in the observer's frame.
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